Nano-Gözenekli Silisyumun Mikro ve Makro Ölçekte Fotolüminesans Homojenliğinin Görüntü Spektroskopisi Yöntemi ile İncelenmesi

Gözenekli Silisyumdan (PS) oda sıcaklığında görünür bölgede etkili lüminesans (PL) gözlenmesi son yılların oldukça popüler konularındandır. Bunun altında yatan temel neden mevcut silisyum teolojisi ile birleştirilerek optoelektronikte pek çok uygulama alanın olmasıdır. Fakat özellikle ışık yayan diyot (LED) uygulamalarına geçilmeden önce lüminesans homojenliği probleminin çözülmesi gerekmektedir. Bu çalışmada Gözenekli Silisyumun fotolüminesans (PL) özelliği makro (95 mm2) ve mikro (10 µm2) ölçekte uzaysal dağılımı görüntü spektroskopisi (IS) yöntemi ile incelenmiştir. PL’nin uzaysal dağılımının incelenen ölçeklerde homojen olmadığı ve PS lüminesans homojenliğinin üretim parametrelerinden ve anodizasyon sonrası çevre koşullarından etkilendiği tespit edilmiştir. Lüminesans şiddetinin ve homojenliğinin atmosferik yaşlanmaya bağlı olarak arttığı görülmüştür.

Investigation of Photoluminescence Homogeneity Distribution of Nano-Porous Silicon by Imaging Spectroscopy

The observation of effective luminescence (PL) from the porous silicon (PS) at the visible region at room temperature is one of the prevalent topics in recent years. This is why there are many application areas in optoelectronics integration with the existing silicon technology. However, non-uniformity of PL is an important problem and should be solved before using its future applications as light emitting diodes (LEDs). In this study, spatial distribution properties of photoluminescence of porous silicon were investigated by imaging spectroscopy (IS) on macro (95 mm2) and micro (10 µm2) scale. It has been showed that the spatial distribution of PL is not homogeneous. The PS luminescence homogeneity is also affected by the production parameters and the post-anodization environmental conditions. It was showed that luminescence intensity and luminescence homogeneity increased with atmospheric aging

___

  • Aouida S., Saadoun M., Boujmil M-F., Ben Rabha M., Bessais B. 2004. Effect of UV irradiations on the structural and optical features of porous silicon: application in silicon solar cells. Applied Surface Science, 238, 193–198.
  • Tsai C., Li K-H., Kinosky D-S., et al. 1992. Thermal treatment studies of the photoluminescence intensity of porous silicon. App. Phys. Lett. 60- 14, 1700-1702.
  • [12] Takasuka E., Kamei K. 1994. Microstructure of porous silicon and its correlation with photoluminescence. Appl. Phys. Lett. 65(4), 484- 486.
  • Toyoda T., Yamazaki T., Shen Q. 2003. Exposure time dependence of the photoacoustic and photoluminescence intensities of porous silicon with different wavelengths of excitation light. Review of Scientific Instruments, 74-1, 869-871.
  • Halimaoui A. 1995. Porous Silicon: Material processing, properties and applications. Porous silicon science and technology, Ed. By: Jen Clode Vial et al. p:332, Springer-Verlag.
  • Kayahan E. 2005. Imaging Spectroscopy Studies of Porous Silicon: The effect of excitation energy on photoluminescence. Süleyman Demirel Üni. Fen Bil. Enst. Dergisi, 9-2, 19-23.
  • Nakagava K., Nishida A., Shimada T., Yamaguchi H., Eguchi K. 1992. Fine structure of porous si with visible photoluminescence. Jpn. J. Appl. Phys. 31, L515-L517.
  • Hossain SM., Das J., Chakraborty S., Dutta SK., Saha H. 2002. Electrode design and planar uniformity of anodically etched large area porous silicon. Semicond. Sci. Tech. 17, 55-59.
  • Ohmukai M., Tsutsumi Y.1997. Characterization of porous silicon by means of photoacoustic spectroscopy. Thin Solid Films, 302-1, 51-53.
  • Fujiwara Y., Nishitani H., Nakata H., Ohyama T. 1992. Structured photoluminescence spectrum in laterally anodized porous silicon. Jpn. J. Appl. Phys. 31, L1763.
  • Esmer K., Kayahan E. 2009. Influence of alkali metallization (Li, Na and K) on photoluminescence properties of porous silicon. Applied Surface Science, 256-5, 1548-1552.
  • Kayahan E. 2011. The role of surface oxidation on luminescence degradation of porous silicon. Applied Surface Science, 257, 4311–4316
  • Riahi R., Derbali L., Ouertani B., Ezzaouia H. 2017. Temperature dependence of nickel oxide effect on the optoelectronic properties of porous silicon. Applied Surface Science, 404, 34-39.
  • Ensafi A-A., Ahmadi N., Rezaei B. 2017. Nickel nanoparticles supported on porous silicon flour application as a non-enzymatic electrochemical glucose sensor. Sensors and Actuators B: Chemical, 239, 807-815.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi