Nano-elektrokimyasal Biyosensörler Kullanılarak DNA ile Doksorubisin Etkileşiminin Araştırılması

Bu çalışmada, nano-elektrokimyasal biyosensörler kullanılarak çift sarmallı deoksiribonükleik asit (dsDNA) ve doksorubisin (DOX) arasındaki etkileşim diferansiyel puls voltametrisi yöntemiyle araştırılmıştır. Biyosensör yüzeyi setil trimetilamonyum (sab) ve karbon nanotüp (knt) içeren çözeltiden elektrodepozisyon yöntemiyle poli(sab)-knt sentezi ile hazırlanmıştır. DNA-ilaç etkileşimi araştırmak için indikatör olarak dsDNA elektroaktif bazların voltametrik sinyalleri kullanılmıştır. İlaç-DNA etkileşimi sonrası hem guanin hem de adenin bazlarının oksidasyon pik akımlarının azaldığı gözlenmiştir. İlacın bağlanma süresi ve derişiminin dsDNA bazlarının voltametrik sinyalleri üzerindeki etkisi de değerlendirilmiştir. DOX için doğrusal çalışma aralığı 0,39-25 µg mL-1 arasında ve gözlenebilme sınırı 0,26 µg mL-1 olarak bulunmuştur. Elektrokimyasal ve spektrokimyasal çalışmalar, DOX ve dsDNA arasındaki etkileşim mekanizmasının interkalasyon modu ile gerçekleştiğini göstermiştir.

Investigation of Doxorubusin Interactions with DNA by Using Nano-electrochemical Biosensors

In this study, the interaction between double-stranded deoxyribonucleic acid (dsDNA) and doxorubicin (DOX) was investigated using nano-electrochemical biosensors by differential pulse voltammetry. The biosensor surface was prepared from a solution containing cetyl trimethylammonium (cab) and carbon nanotubes (cnt) with the synthesis of poly(sab)-knt by electrodeposition method. Voltammetric signals of dsDNA electroactive bases were used as indicators to investigate DNA-drug interactions. It was observed that the oxidation peak currents of both guanine and adenine bases decreased after drug-DNA interaction. The linear range for DOX was found to be between 0.39-25 μg mL-1 and limit of detection was found as 0.26 μg mL-1. Besides, the drug-DNA interaction was demonstrated spectrochemically by UV-vis spectroscopy. Electrochemical and spectrochemical studies have shown that the interaction mechanism between DOX and dsDNA occurs with the intercalation mode.

___

  • [1] Erdem A., Ozsoz M. 2001. Interaction of the anticancer drug epirubicin with DNA, Analytica Chimica Acta, 437(1), 107–114.
  • [2] Yola M.L., Özaltin N. 2011. Electrochemical studies on the interaction of an antibacterial drug nitrofurantoin with DNA, Journal of Electroanalytical Chemistry, 653(1-2), 56–60.
  • [3] Marky L.A., Snyder J.G., Remeta D.P., Breslauer K.J. 1983. Thermodynamics of Drug-DNA Interactions, Journal of Biomolecular Structure and Dynamics, 1(2), 487–507.
  • [4] Bi S., Qiao C., Song D., Tian Y., Gao D., Sun Y., Zhang H. 2006. Study of interactions of flavonoids with DNA using acridine orange as a fluorescence probe, Sensors and Actuators B: Chemical, 119(1), 199–208.
  • [5] Garbett N.C., Ragazzon P.A., Chaires J.O.B. 2007. Circular dichroism to determine binding mode and affinity of ligand-dna interactions, Nature Protocols, 2, 3166–3172.
  • [6] Manfait M., Alix A.J.P., Jeannesson P., Jardillier J.-C., Theophanides T. 1982. Interaction of adriamycin with DNA as studied by resonance Raman spectroscopy, Nucleic Acids Research, 10(12), 3803–3816.
  • [7] Agudelo D., Bourassa P., Bérubé G., Tajmir-Riahi H.A. 2016. Review on the binding of anticancer drug doxorubicin with DNA and tRNA: Structural models and antitumor activity, Journal of Photochemistry and Photobiology B: Biology, 158, 274–279.
  • [8] Ros R., Eckel R., Bartels F., Sischka A., Baumgarth B., S.D. Wilking, A. Pühler, N. Sewald, A. Becker, Anselmetti D. 2004. Single molecule force spectroscopy on ligand-DNA complexes: From molecular binding mechanisms to biosensor applications, Journal of Biotechnology, 112(1-2), 5–12.
  • [9] Erdem A., Ozsoz M. 2002. Electrochemical DNA Biosensors Based on DNA-Drug Interactions, Electroanalysis, 14(14), 965–974.
  • [10] Congur G., Eksin E., Erdem A. 2019. Chitosan modified graphite electrodes developed for electrochemical monitoring of interaction between daunorubicin and DNA, Sensing and Bio-Sensing Research, 22, 100255.
  • [11] Yaman, Y. T., Abaci, S. 2016. Sensitive AdsorptiveVoltammetric Method for Determination ofBisphenol A by GoldNanoparticle/Polyvinylpyrrolidone-ModifiedPencil Graphite Electrode, Sensors, 16, 756.
  • [12] Hajian R., Tayebi Z., Shams N. 2017. Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA, Journal of Pharmaceutical Analysis, 7(1), 27–33.
  • [13] Hassani Moghadam F., Taher M.A., Karimi-Maleh H. 2021. Doxorubicin anticancer drug monitoring by ds-dna-based electrochemical biosensor in clinical samples, Micromachines. 12(7), 808.
  • [14] Kakaei K., Hasanpour K., 2014. Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction, Journal of Materials Chemistry A, 2, 15428 -15436.
  • [15] Toh H.S., Compton R.G. 2015. Electrochemical detection of single micelles through “nano-impacts,” Chemical Science, 6, 5053–5058.
  • [16] Minotti G., Menna P., Salvatorelli E., G. Cairo, Gianni L., 2004. Anthracyclines: Molecular advances and pharmacologie developments in antitumor activity and cardiotoxicity, Pharmalogical Review 56(2), 185–229.
  • [17] Carvalho C., Santos R., Cardoso S., Correia S., Oliveira P., Santos M., Moreira P. 2009. Doxorubicin: The Good, the Bad and the Ugly Effect, Current Medical Chemistry, 16(25), 3267–3285.
  • [18] Deepa S., Swamy B.E.K., Pai K.V. 2020. A surfactant SDS modified carbon paste electrode as an enhanced and effective electrochemical sensor for the determination of doxorubicin and dacarbazine its applications: A voltammetric study, Journal of Electroanalytical Chemistry, 879, 114748.
  • [19] Ghanbari M.H., Norouzi Z. 2020.A new nanostructure consisting of nitrogen-doped carbon nanoonions for an electrochemical sensor to the determination of doxorubicin, Microchemical Journal, 157, 105098.
  • [20] Porfireva A., Vorobev V., Babkina S., Evtugyn G. 2019. Electrochemical Sensor Based on Poly(Azure B)-DNA Composite for Doxorubicin Determination, Sensors. 19(9), 2085.
  • [21] Erdem A., Congur G., 2013. Impedimetric detection of in situ interaction between anti-cancer drug bleomycin and DNA, International Journal of Biological Macromolecules, 61, 295–301.
  • [22] Yang Y.J., Guo L., W. Zhang W. 2016.The electropolymerization of CTAB on glassy carbon electrode for simultaneous determination of dopamine, uric acid, tryptophan and theophylline, Journal of Electroanalytical Chemistry, 768, 102–109.
  • [23] Bolat G., Yaman Y.T., Abaci S., 2018. Highly sensitive electrochemical assay for Bisphenol A detection based on poly (CTAB)/MWCNTs modified pencil graphite electrodes, Sensors and Actuators B:Chemical, 255(1), 140–148.
  • [24] Hasanzadeh M., Mohammadzadeh A., Jafari M., Habibi B., 2018. Ultrasensitive immunoassay of glycoprotein 125 (CA 125) in untreated human plasma samples using poly (CTAB‑chitosan) doped with silver nanoparticles, International Journal of Biological Macromolecules, 120(B), 2048–2064.
  • [25] Abraham P., Renjini S., Nancy T.E.M., Kumary V.A. 2020. Electrochemical synthesis of thin-layered graphene oxide-poly(CTAB) composite for detection of morphine, Journal of Applied Electrochemistry, 50, 41–50.
  • [26] Tehrani M.S., Azar P.A., Namin P.E., Dehaghi S.M. 2013. Removal of Lead Ions from Wastewater Using Functionalized Multiwalled Carbon Nanotubes with Tris(2-Aminoethyl)Amine, Journal of Environmental Protection, 4(6) 529–536.
  • [27] Hasanzadeh M., Shadjou N. 2016. Pharmacogenomic study using bio- and nanobioelectrochemistry: Drug-DNA interaction, Materials Science and Engineering: C, 61, 1002–1017.
  • [28] Wang J. 2002. Electrochemical nucleic acid biosensors, Anal. Chim. Acta. 469(1) 63–71.
  • [29] Neidle S. 1997. Crystallographic insights into DNA minor groove recognition by drugs, Biopolymers, 44(1) 105–121.
  • [30] Chen Z., Qian S., Chen X., Chen J., Zhang G., Zeng, G. 2012. Investigation on the interaction between anthracyclines and DNA in the presence of paclitaxel by resonance light scattering technique, Microchimica Acta, 177, 67–73.
  • [31] Cai C., Chen X., Ge F. 2010. Analysis of interaction between tamoxifen and ctDNA in vitro by multi-spectroscopic methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76(2), 202–206.
  • [32] Liao L.B., Zhou H.Y., Xiao X.M., 2005. Spectroscopic and viscosity study of doxorubicin interaction with DNA, Journal of Molecular Structure, 749(1-3), 108–113.
  • [33] Airoldi M., Barone G., Gennaro G., Giuliani A.M., Giustini M., 2014. Interaction of doxorubicin with polynucleotides. a spectroscopic study, Biochemistry. 53(13), 2197–2207.
  • [34] Hajian R., Shams N., Mohagheghian M. 2009. Study on the interaction between doxorubicin and deoxyribonucleic acid with the use of methylene blue as a probe, Journal of Brazilian Chemical Society, 20(8) 1399–1405.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi