Dopamin ve Ürik Asit Tayini İçin 2-Boyutlu MoSe2 Bazlı Elektrokimyasal Sensör Geliştirilmesi

İki boyutlu (2D) geçiş metal dikalkojenit (TMD) malzemeler sundukları üstün özelliklerden dolayı son yıllarda çok dikkat çekmektedirler. Bu çalışmada, TMD malzemelerin önemli bir üyesi olan molibden diselenür (MoSe2) hidrotermal yöntem ile sentezlenmiş ve çeşitli yöntemlerle yapısal ve morfolojik açıdan incelenmiştir. Analiz sonuçları, MoSe2’ün birkaç katmanlı formda elde edildiğini göstermiştir. MoSe2 daha sonra elektrot modifikasyonunda kullanılmış ve dopamin (DA) ve ürik asitin (UA) eş zamanlı elektrokimyasal tayininde uygulanmıştır. Diferansiyel puls voltametri (DPV) ile gerçekleştirilen tayin çalışmalarından DA için 9.98 – 155 µM arasında ve UA için 19.96 – 310 µM arasında lineer tayin aralıkları belirlenmiştir. Aynı zamanda, geliştirilen sensör askorbik asit (AA) girişiminden etkilenmemekte, kararlı ve tekrar üretilebilir özelliklere sahiptir.

Development of MoSe2-based Electrochemical Sensor for Detection of Dopamine and Uric Acid

In the recent years, two-dimensional (2D) transition metal dichalcogenide (TMD) materials have attracted much attention due to their unique properties. In this work, molybdenum diselenide (MoSe2), as an important member of TMD materials, was synthesized via hydrothermal method and characterized in terms of structural and morphological analyses. The characterization results exhibited that MoSe2 was formed in few layers. Then, the obtained MoSe2 was used in electrode modification and applied for electrochemical simultaneous determination of dopamine (DA) and uric acid (UA). Differential pulse voltammetry (DPV) studies exhibited linear detection ranges of 9.98 – 155 μM and 19.96 – 310 μM for DA and UA, respectively. Moreover, the developed sensor is not affected by ascorbic acid (AA) interference and showed high stability and reproducibility.

___

  • [1] Abu Zahed, Md., Barman, S.C., Toyabur, R.M., Sharifuzzaman, Md., Xuan, X., Nah, J., Park, J.Y. 2019. Ex situ hybridized hexagonal cobalt oxide nanosheets and RGO@MWCNT based nanocomposite for ultra-selective electrochemical detection of ascorbic acid, dopamine, and uric acid. Journal of the Electrochemical Society, 166 (6), B304-B311.
  • [2] Zaidi, S.A. 2018. Development of molecular imprinted polymers based strategies for the determination of Dopamine. Sensors and Actuators, B: Chemical, 265, 488-497.
  • [3] Arrigoni, O., De Tullio, M.C. 2002. Ascorbic acid: Much more than just an antioxidant. Biochimica et Biophysica Acta - General Subjects, 1569 (1-3), 1-9.
  • [4] Becker, B.F. 1993. Towards the physiological function of uric acid. Free Radical Biology and Medicine, 14 (6), 615-631.
  • [5] Sheng, Z. H.; Zheng, X. Q.; Xu, J. Y.; Bao, W. J.; Wang, F. Bin; Xia, X. H. 2012. Electrochemical Sensor Based on Nitrogen Doped Graphene: Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Biosensors and Bioelectronics, 34 (1), 125–131.
  • [6] Jackowska, K.; Krysinski, P. 2013. New Trends in the Electrochemical Sensing of Dopamine. Analytical and Bioanalytical Chemistry, 405 (11), 3753–3771.
  • [7] Atta, N. F., El-Kady, M. F., Galal, A. 2009. Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol. Sensors and Actuators B: Chemical, 41(2), 566-574.
  • [8] Tukimin, N., Abdullah, J., Sulaiman, Y. 2018. Review—electrochemical detection of uric acid, dopamine and ascorbic acid. Journal of the Electrochemical Society, 165 (7), B258-B267.
  • [9] Kaya, S.I., Kurbanoglu, S., Ozkan, S.A. 2019. Nanomaterials-Based Nanosensors for the Simultaneous Electrochemical Determination of Biologically Important Compounds: Ascorbic Acid, Uric Acid, and Dopamine. Critical Reviews in Analytical Chemistry, 49 (2), 101-125.
  • [10] Abouimrane, A., Dambournet, D., Chapman, K.W., Chupas, P.J., Weng, W., Amine, K. 2012. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. Journal of the American Chemical Society, 134 (10), 4505-4508.
  • [11] Eftekhari, A. 2017. Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Applied Materials Today, 8, 1-17.
  • [12] Najafi, L., Bellani, S., Oropesa-Nuñez, R., Ansaldo, A., Prato, M., Del Rio Castillo, A.E., Bonaccorso, F. 2018. Engineered MoSe2-Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 8 (16), art. no. 1703212.
  • [13] Shu, H., Zhou, D., Li, F., Cao, D., Chen, X. 2017. Defect Engineering in MoSe2 for the Hydrogen Evolution Reaction: From Point Defects to Edges. ACS Applied Materials and Interfaces, 9 (49), 42688-42698.
  • [14] Upadhyay, S., Pandey, O.P. 2021. Synthesis of layered 2H–MoSe2 nanosheets for the high-performance supercapacitor electrode material. Journal of Alloys and Compounds, 857, art. no. 157522.
  • [15] Zang, Y.-J., Nie, J., He, B., Yin, W., Zheng, J., Hou, C.-J., Huo, D.-Q., Yang, M., Liu, F.-M., Sun, Q.-Q., Qin, Y.-L., Fa, H.-B. 2020. Fabrication of S-MoSe2/NSG/Au/MIPs imprinted composites for electrochemical detection of dopamine based on synergistic effect. Microchemical Journal, 156, art. no. 104845.
  • [16] Balasingam, S.K., Lee, J.S., Jun, Y. 2015. Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Transactions, 44 (35), 15491-15498.
  • [17] Cogal, S., Ramani, S., Bhethanabotla, V.R., Kuhn, J.N. 2021. Unravelling the Origin of Enhanced Electrochemical Performance in CoSe2−MoSe2 Interfaces. ChemCatChem, 13(8), 2021, 2017-2024.
  • [18] Guo, W., Chen, Y., Wang, L., Xu, J., Zeng, D., Peng, D.-L. 2017. Colloidal synthesis of MoSe2 nanonetworks and nanoflowers with efficient electrocatalytic hydrogen-evolution activity. Electrochimica Acta, 231, pp. 69-76.
  • [19] Cogal, S. 2018. Electrochemical Determination of Dopamine Using a Poly(3,4-Ethylenedioxythiophene)-Reduced Graphene Oxide-Modified Glassy Carbon Electrode. Analytical Letters, 51 (11), 1666-1679.
  • [20] Cheng, J., Wang, X., Nie, T., Yin, L., Wang, S., Zhao, Y., Wu, H., Mei, H. 2020. A novel electrochemical sensing platform for detection of dopamine based on gold nanobipyramid/multi-walled carbon nanotube hybrids. Analytical and Bioanalytical Chemistry, 412 (11), 2433-2441.
  • [21] Li, R., Liang, H., Zhu, M., Lai, M., Wang, S., Zhang, H., Ye, H., Zhu, R., Zhang, W. 2021. Electrochemical dual signal sensing platform for the simultaneous determination of dopamine, uric acid and glucose based on copper and cerium bimetallic carbon nanocomposites. Bioelectrochemistry, 139, art. no. 107745.
  • [22] Kim, B.-K., Lee, J.Y., Park, J.H., Kwak, J. 2013. Electrochemical detection of dopamine using a bare indium-tin oxide electrode and scan rate control. Journal of Electroanalytical Chemistry, 708, pp. 7-12.
  • [23] Raghu, P., Reddy, T. M., Gopal, P., Reddaiah, K.,Sreedhar, N. Y. 2014. A novel horseradishperoxidase biosensor towards the detection ofdopamine: A voltammetric study. Enzyme andMicrobial Technology, 57, 8-15.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi