Analysis of the Mosaic Defects in Graded and Non Graded InxGa1-xN Solar Cell Structures

In this study, graded (A) InxGa1-xN (10.5 ≤ x ≤ 18.4) and non graded (B) InxGa1-xN (13.6 ≤ x ≤ 24.9) samples are grown on c-oriented sapphire substrate using the Metal Organic Chemical Vapour Deposition (MOCVD) technique. The structural, optical and electrical features of the grown InGaN/GaN solar cell structures are analyzed using High Resolution X-Ray Diffraction (HRXRD), Photoluminescense (PL), Ultraviolet (UV), current density and potential (JV) measurements. According to the HRXRD results; it is determined that the InGaN layer of the graded structure has a lower FWHM (Full width at half maximum) value. From the PL measurements, it is observed that the GaN half-width peak value of the graded sample is narrower and the InGaN peak width value of the graded sample is larger. From UV measurements, that the graded sample has a greater band range. JV measurements determine that the performance of the graded structure is higher.

___

  • [1] Nakamura, S., Pearton, S., Fasol, G. 2000.The Blue Laser Diode, Springer, Berlin,56s.
  • [2] Arslan, E., Demirel, P., Cakmak, H., Ozturk, M.K., Ozbay, E. 2014. Mosaic Structure Characterization of the AlInN Layer Grown on Sapphire Substrate. Advances in Materials Science and Engineering, 2014, 1-11.
  • [3] Davydov, V.Yu., Klochikhin, A.A., Seisyan, R.P., Emtsev, V.V., Ivanov, S.V., Bechstedt, F., Furthmuller, J., Harima, H., Mudryi, A.V., Aderhold, J. , Semchinova, O., Graul, J. 2002. Absorption and Emission of Hexagonal InN Evidence of Narrow Fundamental Band Gap. Phys. Status Solidi B, 229,R1-R3.
  • [4] Wu., J., Walukiewicz., W., Yu., K. M., Ager III., J. W., Haller, E.E., Lu, Schaff, H. W. J.,Saito, Y. , Nanishi, Y. 2002. Unusual properties of the fundamental band gap of InN, Appl. Phys. Lett., 80, 3967-3969.
  • [5] Matsuoka, T., Okamoto, H., Nakao, M., Harima, H., Kurimoto, E. 2002. Optical bandgap energy of wurtzite InN. Appl. Phys. Lett., 81,1246-1248.
  • [6] Omkar, J., Ian, F. 2007. Design and characterization of GaN/InGaN solar cells. Appl.Phys.Lett., 91, 1-3.
  • [7] Luque, A., Marti, A. 2001. A metallic intermediate band high efficiency solar cell. Prog. Photovoltaics, 9, 73-86.
  • [8] Yamaguchi, M., Takamoto, T., Araki, K. 2006. Super high-efficiency multi-junction and concentrator solar cells. Solar Energy Mater Solar Cells, 90(18,19), 3068–3077.
  • [9] King, R. R., Law, D. C., Edmondson, K. M., Fetzer, C. M., Kinsey, G. S., Yoon, H., Sherif, R. A., Karam, N. H. 2007. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. App. Phys. Lett., 90, 1-3.
  • [10] De Vos, A. 1992. Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford, 90s.
  • [11] Nanishi, Y., Saito, Y., Yamaguchi, T. 2003. RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys. Jpn. J. Appl. Phys., 142, 2549-2559.
  • [12] Ugo, L. et al. 2012. Increasing the reliability of solid state lighting system via self healing approaches. Microelectronic Reliability, 52(1),71-89.
  • [13] Kendrick Chito, E. 2008. Revisiting Nitride Semiconductors, Epilayers, p-type Doping and Nanowires. University of Canterbury, Electrical and Electronic Engineering, NewZeland, 49s.
  • [14] Brown, G.F., Ager III, J.W., Walukiewicz, W., Wu, J. 2010. Finite element simulations of compositionally graded InGaN solar cells. Solar Energy Materials and Solar Cells, 94, 478-483.
  • [15] Yamaguchi, T., Morioka, C., Mizuo, K., Hori, M., Araki, T., Nanishi, Y., Suzuki, A. 2003. Growth of InN and InGaN on Si substrate for solar cell applications, Compound Semiconductors: Post-Conference Proceedings International Symposium, 25-27 August, USA, 214.
  • [16] Hu, C., Lo, I, Hsu, Y.,Shih, C., Pang, W., Wang, Y., Lin, Y., Yang, C., Tsai, C., Hsu, G. Z. L. 2016. Growth of InGaN/GaN quantum wells with graded InGaN buffer for green to yellow light emitters Japanese Journal of Applied Physics, 55(8),1-6.
  • [17] Sun, Y., Cho, Y., Suh, E.K., Lee, H. J., Choi, R.J., Hahn, Y.B. 2003. High brightness blue and green light emitting quantum wells with graded-In content profile grown by MOCVD,Phys. stat. sol. (c),7,2270-2273.
  • [18] Schuster, M., Gervais, P. O., Jobst, B., Hosler, W., Averbeck, R., Riechert, H., Iberlkand, A., Stommer, R. 1999. Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data. Journal of Physics D-Applied Physics, 32(10A), A56-A60.
  • [19] Butcher, K.S.A., Tansley, T.L. 2005. InN latest development and a review of the band-gap controversy, Superlattices and Microstructures, 38(1), 1-37.
  • [20] Zhu, X.L., Guo, L.W., Yu, N.S., Peng, M.Z., Yan, J.F., Ge, B.H., Jia, H.Q., Chen, H., Zhou, J.M. 2006. Characteristics of High In-content InGaN Alloys Grown by MOCVD, Chinese Physics Letters, 23(12), 3369-3371.
  • [21] Fu, S.P. 2004. Effective mass of InN epilayers. Applied Physics Letters, 85(9), 1523-1525.
  • [22] Wu, J., Walukiewicz, W., Li, S.X., Armitage, R., Ho, J. C., . Weber, E. R, Haller, E. E., Lu, H., Schaff, W. J., Barcz, A., Jakiela R. 2004. Effects of electron concentration on the optical absorption edge of InN. Applied Physics Letters, 84(15), 2805-2807.
  • [23] Pankove, J. I., Miller, E. I., Berkeyheiser, J. E. 1971. GaN Electroluminescent Diodes. RCA Review, 32(3), 383-392.
  • [24] Valdueza-Felip, S., Mukhtarova, A., Grenet, L., Bougerol, C., Durand, C., Eymery, J., Monroy, E. 2014. Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration. Appl. Phys.Exp., 7, 1-3.
  • [25] Mahala, P., Behura, S. K., Ray, A., Dhanavantri, C., Jani, O. 2012. The Effect of Indium Composition on Open-Circuit Voltage of InGaN Thin-Film Solar Cell: An Analytical and Computer Simulation Study. AIP Conf. Proc., 1451, 85-87.
  • [26] Cai, X. M., Zeng, S. W., Li, X., Zhang, J. Y., Lin, S., Lin, A. K, Chen, M., Liu, W. J., Wu, S. X., Zhang, B.P. 2011. Dependence of the Property of InGaN p-i-n Solar Cells on the Light Concentration and Temperature. IEEE Transactions on electron devices, 58,3905-3911.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi
Sayıdaki Diğer Makaleler

Eğirdir (Isparta) Ekolojisinde Yetiştirilen Bazı Geççi Yerli Armut (Pyrus communis L.) Genotiplerinin Meyve Özelliklerinin Belirlenmesi

MEHMET POLAT, Öznur AZ

Effect of Illumination on the Photovoltaic Parameters of Al/p‐Si Diode with an Organic Interlayer Prepared by Spin Coating Method

Arife GENCER IMER, Ahmet TOMBAK, Abdulkadir KORKUT

<i>Marrubium lutescens</i> Boiss. ve <i>M. cephalanthum</i> Boiss. & Noë subsp. <i>akdaghicum (Lamiaceae)</i>' un Gövde ve Yaprak Özelliklerinin Anatomik Olarak Karşılaştırılması

Meltem TUYLU, Hatice Nurhan BÜYÜKKARTAL, Gençay AKGÜL, Hasan KALYONCU

Antalya İlinde Kesme Çiçek Seralarında Bulunan Zararlı Böcek ve Akar Türleri

Zeliha TIRAŞ, BÜLENT YAŞAR

Sol‐Jel ile Sentezlenmis Er3+:Y2Si2O7 Nanofosforların Spektroskopik Özellikleri Üzerinde Konsantrasyon ve Faz Etkileri

Murat ERDEM, Hümeyra ÖRÜCÜ

Asya Armut (Pyrus pyrifolia) Çeşitlerinin Uşak Koşullarında Morfolojik, Fenolojik, Pomolojik ve Bazı Biyokimyasal Özelliklerinin Belirlenmesi

İlker EKİCİ, Adnan N. YILDIRIM

Integrable G2 Structures on 7-dimensional 3-Sasakian Manifolds

NÜLİFER ÖZDEMİR, ŞİRİN AKTAY

The Physical Meaning of the Rényi Relative Entropy

Gökhan Barış BAĞCI

Neoseiulus californicus McGregor ve Phytoseiulus persimilis Athias‐Henriot (Acari: Phytoseiidae) Avcı Türlerine Dört Farklı Akarisitin Yan Etkileri

Sibel YORULMAZ SALMAN, İrfan TURAN

Sınıflandırma Problemlerinin Karşılaştırılmasında ANFIS ve Basamak Korelasyon Sinir Ağının Kullanımı

Nilgün ŞENGÖZ, GÜLTEKİN ÖZDEMİR