A Comparisonof Confidence Interval Methods of Fixed Effectin Nested Error Regression Model
Doğrusal karışık etki modelleri, zooloji, biyoloji ve eğitim gibi bilimin birçokalanında popüler ve güçlü bir araçtır. Bu modellerde sabit etki parametrelerinintahminleri hata ve rasgele etki terimlerinin varyanslarına bağlıdır. Rasgeleetkilerin dağılımları bilinmediğinde veya yeterli sayıda örnek bulunamadığında standart metodlar doğru sonuç vermeyebilir. Karışık etki modellerinin özel bir haliolan iç içe hata regresyon modelinin sabit etki parametresi için varolan güvenaralığı metodları arasında parametrenin gerçek değerini kapsama olasılığı bakımından en iyi olan güven aralığı metodu aranmıştır. Standart ve parametrikbootstrap-tabanlı güven aralığı metodları iç içe hata regresyon modeli içinsimülasyon çalışmasında küçük örnek çaplarında karşılaştırılmıştır. Zayıfkorelasyonda parametrik-bootstrap metodları daha iyi sonuçlar vemiştir. Profilolabilirlik metodu orta ve güçlü korelasyonlarda daha iyi sonuçlar sağlamıştır.
İç İçe Hata Regresyon Modelinde Sabit Etki Parametresi için Güven Aralığı Metodlarının Karşılaştırılması
Linear mixed-effects models are very popular and powerful tools inmany scientific fields such as zoology, biology, and education. Estimators of fixedeffects do not only depend on the variances of error terms but they also depend onrandom terms in mixed-effect models. When the distributions of random effects are unknown or enough sample size cannot be obtained, standard methods may fail. This study aims to determine a promising confidence interval method amongexisting methods in terms of coverage probability of true value of parameter.Standard and parametric bootstrap-based confidence interval methods for nestederror regression model were compared in the simulation study under smallsamples. It is observed that parametric bootstrap-based method provides bettercoverage rates for small intra-correlation and profile likelihood method usuallyprovides better results for moderate and strong correlation.
___
- Demidenko, E. 2004. Mixed Models: Theory and Applications. Wiley, 726p.
- Eisenhart, C. 1947. The Assumptions Underlying the Analysis of Variance. Biometrics, 3(1), 1-21.
- Patterson, H.D., Thompson, R. 1971. Recovery of Inter-block Information When Block Sizes are Unequal. Biometrika, 58(3), 545-554.
- Searle, S.R., Casella, G., McCulloch, C.E., 2009. Variance Components (Vol. 391). John Wiley & Sons, 509p.
- Kackar, R. N., Harville, D. A. 1984. Approximations for Standard Errors of Estimators of Fixed and Random Effects in Mixed Linear Models. Journal of the American Statistical Association, 79(388), 853-862.
- Kenward, M. G. Roger, J. H. 1997. Small Sample Inference for Fixed Effects From Restricted Maximum Likelihood. Biometrics, 1997, 983- 997.
- Harville, D. A., Fenech, A. P. 1985. Confidence Intervals for a Variance Ratio, or for Heritability, in Model. Biometrics, 1985, 137-152. Mixed Linear
- Savin, A., 2005. Confidence Intervals for Common Mean in One-way Classification Model with Fixed Effects. Measurement, 2005, 15-19.
- Hall, P., Maiti, T. 2006. On Parametric Bootstrap Methods for Small Area Prediction. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(2), 221-238.
- Staggs, V. 2009. Parametric Bootstrap Interval Approach to Inference for Fixed Effects in the Mixed Linear Model, PhD Thesis, University of Kansas, 73 p, Lawrence.
- Burch, B. D. 2011. Confidence Intervals for Variance Components in Unbalanced One-way Random Effects Model Using Non-normal Distributions. Journal of Statistical Planning and Inference, 141(12), 3793-3807.
- Liu, J. 2013. Statistical Inference for Functions of the Parameters of a Linear Mixed Model, PhD Thesis, Iowa State University, 75p, Ames.
- Neyman, J., Pearson, E. S. 1928. On the Use and Interpretation of Certain Test Criteria for Purposes I. Biometrika, 1928, 175-240. Inference: Part
- Wald, A. 1943. Tests of Statistical Hypotheses Concerning Several Parameters when the Number of Observations is Large. Transactions ofthe American Mathematical Society, 54(3), 426-482.
- Bates, D. M., Pinheiro, J. C. 1994. Model Building for Nonlinear Mixed Effects Models, University of Wisconsin, Department of Biostatistics.
- Lehmann, E. L. 1999. Elements of Large-Sample Theory. Springer Science & Business Media, 645p.
- Hulting, F. L., Harville, D. A. 1991. Some Bayesian and Non-Bayesian Procedures for the Analysis of Comparative Experiments and for Small-area Estimation: Computational Aspects, Frequentist Properties, and Relationships. Journal of the American Statistical Association, 86(415), 557- 568.
- Efron, B. 1992. Bootstrap Methods: Another Look at the Jackknife. Breakthroughs in Statistics. 1992, 569-593, New York.
- DiCiccio, T. J., Romano, J. P. 1988. A Review of Bootstrap Confidence Intervals. Journal of the Royal (Methodological), 338-354. Society. Series B
- DiCiccio, T. J., Romano, J. P. 1990. Nonparametric Confidence Limits by Resampling Methods and Least Favourable Families. International Statistical Review/Revue Internationale de Statistique, 1990, 59-76.
- Goldstein, H. 2011. Multilevel Statistical Models (Vol. 922). John Wiley & Sons, 358p.
- Zeger, S. L., Liang, K. Y. 1986. Longitudinal Data Analysis Outcomes. Biometrics, 1986, 121-130. and Continuous
- Chernick, M. R. 2011. Bootstrap Methods: A Guide for Practitioners and Researchers (Vol. 619). John Wiley & Sons, 369p.
- Efron, B., Efron, B. 1982. The Jackknife, the Bootstrap and Other Resampling Plans (Vol. 38). Philadelphia: Society for Industrial and Applied Mathematics, 92p.
- Efron, B., Tibshirani, R. J. 1994. An Introduction to the Bootstrap. CRC press, 436p.
- Halekoh, U., Hİjsgaard, S. 2014. A kenward- Roger Approximation and Parametric Bootstrap Methods for Tests in Linear Mixed Models-the R Package pbkrtest. Journal of Statistical Software, 59(9), 1-30.
- Bates, D., Maechler, M., Bolker, B., Walker, S. 2014. lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package Version, 1(7).