Marine derived tyrosinase inhibitors

The cosmetics industry has gained strong momentum all over the world in recent years and has become a growing and promising sector. As it is known, as in the pharmaceutical industry, the cosmetic industry has also turned into becoming marine resources by seeking new materials for its continuation to be more productive for the field. To serve this purpose, marine-derived substances are highly claimed to be an interesting as well as a fruitful source for the benefits of the cosmetics industry. In this respect, as known globally, anti-tyrosinase inhibitors used in skin whitening are obtained from a considerable number of marine organisms. In this regard, the main objective of this article is to summarize a highly significant number of natural products derived from marine sources such as algae, fungi, seaweeds and bacteria which are known to have shown anti-tyrosinase activity.

Deniz kaynaklı tirozinaz inhibitörleri

Kozmetik sektörü son yıllarda çok güçlü bir ivme kazanmış ve tüm dünyada gelecek vaad eden bir sektör haline gelmiştir. İlaç endüstrisinde olduğu gibi, kozmetik endüstrisinde de yeni maddeler arama çabasıyla denizel kaynaklara yönelinmiştir. Bu nedenle, deniz kaynaklı kimyasalların kozmetik endüstrisinin yararı için ilginç ve verimli bir kaynak olduğu düşünülmektedir. Bilindiği gibi, cilt beyazlatma amacıyla kullanılan anti-tirozinaz inhibitörleri, önemli sayıda deniz organizmasından elde edilmektedir. Bu bağlamda, bu makalenin ana amacı, anti-tirozinaz aktivitesi gösterdiği bilinen alg, mantar, deniz yosunu ve bakteri gibi deniz kaynaklarından elde edilen çok sayıda doğal ürün hakkında bilgi vermektedir.

___

Abd El Hady, F., Abelaziz, M., Abdou, A.M., Shaker, K., Ibrahim, L.S. & ElShahid, Z.A. (2014). In-vitro anti-diabetic and cytotoxic effect of the coral derived fungus (Emericella unguis 8429) on human colon, liver, breast and cervical carcinoma cell lines. International Journal of Pharmaceutical Sciences Review and Research, 27, 296-301.

Abd El Hady, F., Abelaziz, M., Shaker, K. & El-Shahid, Z.A. (2014). Tyrosinase, acetylcholinesterase inhibitory potential, antioxidant and antimicrobial activities of Sponge derived fungi with correlation to their GC/MS analysis. International Journal of Pharmaceutical Sciences Review and Research, 26, 338-345.

Alğın Yapar, E. (2016). Cilt Beyazlatıcılara Genel Bakış. Marmara Pharmaceutical Journal, 21(24530), 48-53. DOI:10.12991/marupj.259880

Almeida, C., Part, N., Bouhired, S., Kehraus, S. & Konig, G. M. (2011). Stachylines A-D from the sponge-derived fungus Stachylidium sp. Journal of Natural Products, 74(1), 21-25. DOI:10.1021/np1005345

Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H., & Prinsep, M.R. (2015). Marine natural products. Natural Product Reports, 31(2), 160-258. DOI:10.1039/c3np70117d

Boonme, P., Junyaprasert, V., Suksawad, N. & Songkro, S. (2009). Microemulsions and Nanoemulsions: Novel Vehicles for Whitening Cosmeceuticals. Journal of biomedical nanotechnology, 5, 373-383. DOI:10.1166/jbn.2009.1046

Brunt, E.G. & Burgess, J.G. (2018). The promise of marine molecules as cosmetic active ingredients. International Journal of Cosmetic Science, 40(1), 1-15. DOI:10.1111/ics.12435

Cha, S.-H., Ko, S.-C., Kim, D. & Jeon, Y.-J. (2011). Screening of marine algae for potential tyrosinase inhibitor: Those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish. The Journal of dermatology, 38, 354-363. DOI:10.1111/j.1346-8138.2010.00983.x

Chang, T.-S. (2012). Natural Melanogenesis Inhibitors Acting Through the Down-Regulation of Tyrosinase Activity. Materials, 5(9), 1661-1685. DOI:10.3390/ma5091661

Cheung, F. W., Guo, J., Ling, Y. H., Che, C. T. & Liu, W. K. (2012). Antimelanogenic property of geoditin A in murine B16 melanoma cells. Marine Drugs, 10(2), 465-476. DOI:10.3390/md10020465

Christophersen, C., Crescente, O., Frisvad, J. C., Gram, L., Nielsen, J., Nielsen, P. H., & Rahbaek, L. (1998). Antibacterial activity of marinederived fungi. Mycopathologia, 143(3), 135-138. DOI:10.1023/a:1006961500325

Cooksey, C. J., Garratt, P., Land, E. J., Ramsden, C. A., Riley, P., & Smit, N. (1997). Evidence of the Indirect Formation of the Catecholic Intermediate Substrate Responsible for the Autoactivation Kinetics of Tyrosinase. The Journal of biological chemistry, 272, 26226-26235. DOI:10.1074/jbc.272.42.26226

Corinaldesi, C., Barone, G., Marcellini, F., Dell'Anno, A., & Danovaro, R. (2017). Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Marine Drugs, 15(4). DOI:10.3390/md15040118

Cuomo, V. P., I. ; Perretti, A. ; Guerriero, A. ; D’Ambrosio, M.; Pietra, F. (1995). Journal of Marine Biotechnology, 2, 199-204. Çomoglu, T. (2012). Kozmetikler. Marmara Pharmaceutcal Journal, 1(16), 1- 8. DOI:10.12991/201216414

D'Orazio, N., Gammone, M. A., Gemello, E., De Girolamo, M., Cusenza, S., & Riccioni, G. (2012). Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Marine Drugs, 10(4), 812-833. DOI:10.3390/md10040812

Deering, R. W., Chen, J., Sun, J., Ma, H., Dubert, J., Barja, J. L.,Seeram, N.P.,Wang, H.,Rowley,D. C. (2016). N-Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea sp. PP2- 459. Journal of Natural Products, 79(2), 447-450. DOI:10.1021/acs.jnatprod.5b00972

Dolorosa, M., Nurjanah, N., Purwaningsih, S., Anwar, E., & Hidayat, T. (2019). Tyrosinase inhibitory activity of Sargassum plagyophyllum and Eucheuma cottonii methanol extracts. IOP Conference Series: Earth and Environmental Science, 278, 012020. DOI:10.1088/1755-1315/278/1/012020

Fiorucci, S., Distrutti, E., Bifulco, G., D'Auria, M. V., & Zampella, A. (2012). Marine sponge steroids as nuclear receptor ligands. Trends in Pharmacological Sciences, 33(11), 591-601. DOI:10.1016/j.tips.2012.08.004

Guillerme, J.-B., Couteau, C., & Coiffard, L. (2017). Applications for Marine Resources in Cosmetics. Cosmetics, 4(3), 35. DOI:10.3390/cosmetics4030035

Handayani, D., Sandrawati, N., Akbar, S., Syafni, N., & Putra, D. (2019). Tyrosinase Inhibitory Activity of Ethyl Acetate Extracts from Marine Sponge-Derived Fungi Haliclona fascigera. Bioscience Research, 16, 2369-2373.

Hasan, S., Ansari, M. I., Ahmad, A., & Mishra, M. (2015). Major bioactive metabolites from marine fungi: A Review. Bioinformation, 11(4), 176- 181. DOI:10.6026/97320630011176

Kang, H. S., Kim, H. R., Byun, D. S., Son, B. W., Nam, T. J., & Choi, J. S. (2004). Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Archives of Pharmacal Research, 27(12), 1226- 1232. DOI:10.1007/bf02975886

Kang, H. Y., Yoon, T., & Lee, G. (2011). Whitening Effects of Marine Pseudomonas Extract. Annals of Dermatology, 23(2), 144-149. DOI:10.5021/ad.2011.23.2.144

Kim, K., Leutou, A. S., Jeong, H., Kim, D., Seong, C. N., Nam, S. J., & Lim, K. M. (2017). Anti-Pigmentary Effect of (-)-4-Hydroxysattabacin from the Marine-Derived Bacterium Bacillus sp. Marine Drugs, 15(5). DOI:10.3390/md15050138

Kjer, J., Debbab, A., Aly, A. H., & Proksch, P. (2010). Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nature Protocols, 5(3), 479-490. DOI:10.1038/nprot.2009.233

Kubo, I., Kinst-Hori, I., Chaudhuri, S. K., Kubo, Y., Sanchez, Y., & Ogura, T. (2000). Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorganic & Medicinal Chemistry, 8(7), 1749-1755. DOI:10.1016/s0968-0896(00)00102-4

Lampis, G., Deidda, D., Maullu, C., Madeddu, M. A., Pompei, R., Delle Monachie, F., & Satta, G. (1995). Sattabacins and sattazolins: new biologically active compounds with antiviral properties extracted from a Bacillus sp. The Journal of Antibiotics, 48(9), 967-972. DOI:10.7164/antibiotics.48.967

Lee, H. Y., Jang, E. J., Bae, S. Y., Jeon, J. E., Park, H. J., Shin, J., & Lee, S. K. (2016). Anti-Melanogenic Activity of Gagunin D, a Highly Oxygenated Diterpenoid from the Marine Sponge Phorbas sp., via Modulating Tyrosinase Expression and Degradation. Marine Drugs, 14(11). DOI:10.3390/md14110212

Lee, Y.-M., Dang, H. T., Li, J., Zhang, P., Hong, J.-K., Lee, C.-O., & Jung, J.- H. (2011). A Cytotoxic Fellutamide Analogue from the Sponge-Derived Fungus Aspergillus versicolor. Bulletin of the Korean Chemical Society, 32(10), 3817-3820. DOI:10.5012/bkcs.2011.32.10.3817

Li, X., Kim, M. K., Lee, U., Kim, S. K., Kang, J. S., Choi, H. D., & Son, B. W. (2005). Myrothenones A and B, cyclopentenone derivatives with tyrosinase inhibitory activity from the marine-derived fungus Myrothecium sp. Chemical and Pharmaceutical Bulletin (Tokyo), 53(4), 453-455. DOI:10.1248/cpb.53.453

Liu, Q., Xu, H., Zhang, T., Fan, X., & Han, L. (2006). A new compound as PTP1B inhibitor from the red alga Polysiphonia urceolata. Chemistry Bulletin / Huaxue Tongbao, 69, 708-710.

Lo, Y. H., Lin, R. D., Lin, Y. P., Liu, Y. L., & Lee, M. H. (2009). Active constituents from Sophora japonica exhibiting cellular tyrosinase inhibition in human epidermal melanocytes. Journal of Ethnopharmacology, 124(3), 625-629. DOI:10.1016/j.jep.2009.04.053

Luo, X., Zhou, X., Lin, X., Qin, X., Zhang, T., Wang, J.,Tu, Z.,Yang, B.,Liao, S.,Tian, Y.,Pang, X., Kaliyaperumal, K., Li, J. L., Tao, H., Liu, Y. (2017). Antituberculosis compounds from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. Natural Product Research, 31(16), 1958-1962. DOI:10.1080/14786419.2016.1266353

Mancha, S. R., Regnery, C. M., Dahlke, J. R., Miller, K. A., & Blake, D. J. (2013). Antiviral activity of (+)-sattabacin against Varicella zoster. Bioorganic & Medicinal Chemistry Letters, 23(2), 562-564. DOI:10.1016/j.bmcl.2012.11.017

Martins, A., Vieira, H., Gaspar, H., & Santos, S. (2014). Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Marine Drugs, 12(2), 1066-1101. DOI:10.3390/md12021066

Matsukawa, R., Dubinsky, Z., Masaki, K., Takeuchi, T., & Karube, I. (1997). Enzymatic screening of microalgae as a potential source of natural antioxidants. Applied Biochemistry and Biotechnology, 66(3), 239-247. DOI:10.1007/bf02785590

Moghadamtousi, S. Z., Nikzad, S., Kadir, H. A., Abubakar, S., & Zandi, K. (2015). Potential Antiviral Agents from Marine Fungi: An Overview. Marine Drugs, 13(7), 4520-4538. DOI:10.3390/md13074520

Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G., & Worm, B. (2011). How many species are there on Earth and in the ocean? PLOS Journals, 9(8), e1001127. DOI:10.1371/journal.pbio.1001127

Mostafa, E. R., Wael, E. H., Nathalie, M. L., Carol, C., Marcel, J., & Rainer, E. (2010). Dibenzofurans from the marine sponge-derived ascomycete Super1F1-09. Botanica Marina, 53(6), 499-506. DOI:10.1515/bot.2010.064

Mr, I., Mikami, D., Kurihara, H. (2017). Tyrosinase Inhibitory and Antioxidant Activity by Bromophenols from the Alga Odonthalia corymbifera. Natural Products: An Indian Journal, 13(2), 110.

Muda, H., Aziz, A., Taher, Z., & Aziz, R. (2017). Cosmeceuticals and Natural Cosmetics. In R. Hasham (Ed.), Recent Trends in Research into Malaysian Medicinal Plants (First ed., pp. 126-175): penerbit UTM Press.

Nastrucci, C., Cesario, A., & Russo, P. (2012). Anticancer Drug Discovery from the Marine Environment. Recent patents on anti-cancer drug discovery, 7, 218-232. DOI:10.2174/157489212799972963

No, J. K., Soung, D. Y., Kim, Y. J., Shim, K. H., Jun, Y. S., Rhee, S. H.,Yokozawa, T., Chung, H. Y. (1999). Inhibition of tyrosinase by green tea components. Life Sciences, 65(21), Pl241-246. DOI:10.1016/s0024-3205(99)00492-0

Parvez, S., Kang, M., Chung, H. S., & Bae, H. (2007). Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytotherapy Research, 21(9), 805-816. DOI:10.1002/ptr.2184

Paudel, P., Wagle, A., Seong, S. H., Park, H. J., Jung, H. A., & Choi, J. S. (2019). A New Tyrosinase Inhibitor from the Red Alga Symphyocladia latiuscula (Harvey) Yamada (Rhodomelaceae). Marine Drugs, 17(5). DOI:10.3390/md17050295

Pereira, L. (2015). Seaweed Flora of the European North Atlantic and Mediterranean. In (pp. 65-178).

Pereira, L. (2018). Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy. Cosmetics, 5(4), 68. DOI:10.3390/cosmetics5040068

Pillaiyar, T., Manickam, M., & Namasivayam, V. (2017). Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 403-425. DOI:10.1080/14756366.2016.1256882

Pontius, A., Krick, A., Kehraus, S., Brun, R., & Konig, G. M. (2008). Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. Journal of Natural Products, 71(9), 1579-1584. DOI:10.1021/np800294q

Ramos, A. A., Prata-Sena, M., Castro-Carvalho, B., Dethoup, T., Buttachon, S., Kijjoa, A., & Rocha, E. (2015). Potential of four marine-derived fungi extracts as anti-proliferative and cell death-inducing agents in seven human cancer cell lines. Asian Pacific Journal of Tropical Medicine, 8(10), 798-806. DOI:10.1016/j.apjtm.2015.09.005

Rodriguez-López J. , N., Tudela, J., Varón, R., & Garcia-Cánovas, F. (1991). Kinetic study on the effect of pH on the melanin biosynthesis pathway. Biochimica et biophysica acta, 1076(3), 379-386. Retrieved from http://www.biomedsearch.com/nih/Kinetic-study-effect-pHmelanin/1900435.html

Shen, C., Chen, P., Wu, J., Lee, T., Hsu, S., Chang, C., Chiu-Chung, Y., Shieh, C. (2011). Purification of algal anti-tyrosinase zeaxanthin from Nannochloropsis oculata using supercritical anti-solvent precipitation. The Journal of Supercritical Fluids, 55(3), 955-962. DOI:10.1016/j.supflu.2010.10.003

Shimizu, K., Kondo, R., & Sakai, K. (2000). Inhibition of tyrosinase by flavonoids, stilbenes and related 4-substituted resorcinols: structureactivity investigations. Planta medica, 66(1), 11-15. DOI:10.1055/s-2000-11113

Sugumaran, M. (1991). Molecular mechanisms for mammalian melanogenesis: Comparison with insect cuticular sclerotization1 . FEBS Letters, 295(1), 233-239. DOI:10.1016/0014-5793(91)81431-7

Sumathy, B., & Kim, E.-K. (2011). Effect of Marine Cosmeceuticals on the Pigmentation of Skin. In S-K. Kim (Ed.), Marine Cosmeceuticals Trends and Prospects (pp. 63-66) Boca Raton: Crs Press.

Thirunavukkarasu, N., Suryanarayanan, T., Girivasan, K.P., Ambayeram, V., Greetha, V., Ravishankar, J. & Doble, M. (2012). Fungal symbionts of marine sponges from Rameswaram, southern India: Species composition and bioactive metabolites. Fungal diversity, 2. DOI:10.1007/s13225-011-0137-6

Trianto, A., Widyaningsih, S., Radjasa, O. K., & Pribadi, R. (2017). Symbiotic Fungus of Marine Sponge Axinella sp. Producing Antibacterial Agent. IOP Conference Series: Earth and Environmental Science, 55, 012005. DOI:10.1088/1755-1315/55/1/012005

Tsuchiya, T., Yamada, K., Minoura, K., Miyamoto, K., Usami, Y., Kobayashi, T., Hamada-Sato, N., Imada, C., Tsujibo, H. (2008). Purification and determination of the chemical structure of the tyrosinase inhibitor produced by Trichoderma viride strain H1-7 from a marine environment. Biological and Pharmaceutical Bulletin, 31(8), 1618-1620. DOI:10.1248/bpb.31.1618

Uppala, L. (2015). A Review on Active Ingredients from Marine Sources used in Cosmetics. SOJ Pharmacy and Pharmaceutical Sciences, 2(3), 1-3.

Vamos-Vigyazo, L. (1981). Polyphenol oxidase and peroxidase in fruits and vegetables. Critical Reviews in Food Science and Nutrition, 15(1), 49- 127. DOI:10.1080/10408398109527312

Wachi, Y. B., J. G.; Takahashi, J.; Nakamura, N.; Matsunaga, T. (1995). Tyrosinase inhibition by the water-soluble fraction of marine microalgae. J. Mar. Biotechnol., 2, 210-213. Retrieved from https://ci.nii.ac.jp/naid/10014710487/en/

Whitaker, J. R. (1994). Prenciples of enzymology for the food sciences (Second ed.). Marcel Dekker,Inc.

Wijesinghe, W. A. J. P., & Jeon, Y.-J. (2011). Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: A review. Phytochemistry Reviews, 10, 431-443. DOI:10.1007/s11101-011-9214-4

Wu, B., & Naranmadura, H. (2014). Tyrosinase Inhibitors from Terrestrial and Marine Resources. Current topics in medicinal chemistry, 14. DOI:10.2174/1568026614666140523115357

Wu, B., Wu, X., Sun, M., & Li, M. (2013). Two novel tyrosinase inhibitory sesquiterpenes induced by CuCl2 from a marine-derived fungus Pestalotiopsis sp. Z233. Marine Drugs, 11(8), 2713-2721. DOI:10.3390/md11082713

Zhang, D., Li, X., Kang, J., Choi, H., & Son, B. (2007). A New α-Pyrone Derivative, 6-[(E)-Hept-1-enyl]-α-pyrone, with Tyrosinase Inhibitor Activity from a Marine Isolate of the Fungus Botrytis. Cheminform, 38. DOI:10.1002/chin.200740195

Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., GarciaMolina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279-309. DOI:10.1080/14756366.2018.1545767
Su Ürünleri Dergisi-Cover
  • ISSN: 1300-1590
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1984
  • Yayıncı: Aynur Lök
Sayıdaki Diğer Makaleler

Güneydoğu Karadeniz'de erken aşamadaki kopepod (Kopepoditler ve Naupliler) bolluğu Sagitta setosa (Chaetognatha) yağ asiti kompozisyonu üzerinde önemli rol oynayabilir mi?

İlknur Yıldız, Fatma Caf, Nurgül Şen Özdemir, Ali Muzaffer Feyzioğlu

New record of three freshwater fish species from a western drainage of Lake Urmia for the Turkish fauna

CÜNEYT KAYA

İzmir Körfezi (Ege Denizi) gırgır balıkçılığında tür çeşitliliği ve baskınlık indeksleri

Zafer Tosunoğlu, Ahmet Mert Şenbahar, Özlem Güleç

Distribution of Aquatic Diptera larvae of Yeşilırmak River (Turkey) and ecological characteristics

Özge BAŞÖREN, Nilgün KAZANCI

Urmia Gölü'nün batı drenajından Türkiye faunası için üç yeni tatlısu balık türü kaydı

Cüneyt Kaya

Grobiyotik A ilavesinin levrek (Dicentrarchus labrax) juvenillerinde büyüme performansı, vücut kompozisyonu, karaciğer ve bağırsak histolojik değişimleri üzerine etkileri

Tülay Akaylı, Yavuz Mazlum, Selin Sayın, Mehmet Naz, Metin Yazıcı, Çiğdem Ürkü

Species diversity and dominancy indexes in Izmir Bay (Aegean Sea) purse seine fishery

Ahmet Mert ŞENBAHAR, Özlem GÜLEÇ, ZAFER TOSUNOĞLU

The length and weight relationships and feeding ecology of knout goby, Mesogobius batrachocephalus (Pallas, 1814) from Southern Black Sea

Elizabeth Grace Tunka BENGİL, Mehmet AYDIN

Pullu sazan (Cyprinus carpio L)’da paraoksonaz ve arilesteraz enzim aktivitelerine curcuminin etkisi

Selman AKOĞUL, SERPİL MİŞE YONAR

Biberiye ve defne uçucu yağları ile zenginleştirilmiş hamsi atık protein filmlerin karakterizasyonu ve antioksidan kapasitesi

Serpil Tural, Sadettin Turhan, Fatih Öz