Farklı rotifer (Brachionus plicatilis O. F. Muller, 1786) yoğunluklarında ultraviyole ışınları kullanımının bakteri yükü üzerine etkisi

Bu çalışmada, ticari balık üretiminde kullanılan farklı rotifer (Brachionus plicatilis) yoğunlukları (2 000-30 000 adet.ml-1) üzerinde ve üç farklı su akış debisinde (yaklaşık 1-1,5-2 l.dk-1) UV ışımasının rotiferlerin bakteri florasında ve yaşama yüzdesindeki etkileri tespit edilmiştir. Mikrobiyolojik inceleme toplam bakteri CASO agar, Vibrio spp. TCBS-Cholera Medium agar besiyerlerine yapılan ekimlerle değerlendirilmiştir. UV dezenfeksiyonu öncesi ve sonrasında rotiferlerin yaşama yüzdeleri ışık mikroskobu altında incelenmiştir. Araştırma süresince denek grupları arasında rotifer yoğunlukları en düşük 2680 ± 520 adet/ml ile en yüksek 29650 ± 342 adet/ml arasında tespit edilmiştir. Rotifer yoğunluklarına bağlı olarak, kültüre edilebilir total bakteri yükü %20 ile %85 oranında azalttığı saptanmıştır. Rotifer yaşama yüzdeleri %49.3±9.12 ile %93±1.86 arasında tespit edilmiştir. Sonuç olarak, deniz balıkları larval yetiştiriciliğinde başarılı bir şekilde kullanılabilecek, pratik ve maliyeti düşük bir UV sistemi geliştirilmiştir.

The effects of using ultraviolet radiation on bacterial load of the different density of rotifer (Brachionus plicatilis O.F. Muller, 1786)

In this study, the effects of ultraviolet radiation on bacterial load and survival rates was determined depend on the different density of rotifer (2000- 30000 ind.ml-1) used in commercial marine fish production and on the three different flow rates (1, 1.5, 2 l.min-1). CASO agar and TCBS agar were used to calculate total bacteria and Vibrio spp. bacteria, respectively. The survival rates of the rotifer were calculated with light microscope. The density of the rotifer were taken into account between 2680±520 and 29650±342 ind.ml-1 during this experiments. The survival rates of rotifer were obtained between 49.3±9.12 % and %93±1.86 %. As a results of an UV system useful and low cost was developed to use in the rearing of marine fish larvae.

___

Bridges, B. A. 1976. Survival of bakteri following exposure to ultraviolet and ionizing radiations, p. 183-208. In T. R. Gray and J. R. Postgate [eds.],The survival of vegetative microbes. Cambridge Univ. Cambridge.

Comps, M. and B. Menu. 1997. Infectious diseases affecting mass production of the marine rotifer Brachionus plicatilis. Hydrobiologia. 358:179-183.

Gatesoupe, F. J. 1990. The contionus feeding and turbot larvae Scophthalmus maximus and control of the bacterial environment of rotifers. Aquaculture. 89: 139-148.

Gatesoupe, F. J. 1995. A method for the early assessment quality turbot larvae. Aquacultere International. 3:150-154.

Hindioğlu, A., S. Serdar. 2001. The effect of different dilution rates on rotifer (Brachionus plicatilis) culture. (in Turkish) Türk J. Vet. Anim. Sci. 25: 483-487.

Lavens, P., P. Sorgeloos. 1996. Manual on the production and use of live food for aquaculture. FAO fisheries technical paper, 361. Rome.

Lubzens, E., A. Tandler, and G. Minkoff. 1989. Rotifers as food in aquaculture. Hydrobiologia, 186/187: 387-400.

Lubzens, E., O. Zmora, Y. Barr. 2001. Biotechnology and aquaculture of rotifers Hydrobiologia. 446/447: 337-353.

Makridis, P., A. J. Fjellheim, J. Skjermo, O. Vadstein. 2000. Control of the bacterial flora of Brachionus plicatilis and Artemia franciscana by incubation in bacterial suspensions. Aquaculture. 185: 207-218.

Martinez-Diaz, S. F., C. A. Alvarez-Gonzalez, M. M. Legorreta, R. Vazquez-Juarez and J. Barrios-Gonzales. 2003. Elimination of the associated microbial community and bioencapsulation of bacteria in the rotifer Brachionus plicatilis. Aquaculture International. 11:95-108.

Moretti, A., M. P. Fernandez-Criado, G. Cittolin, R. Guidastri. 1999. Manual on hatchery production of seabass and gilthead seabream. FAO, 1. Rome.

Munro, P. D., R. J. Handerson, A. Barbour and T. H. Birkbeck. 1999. Partial decontamination of rotifers with ultraviolet radiation: the effect of changes in the bacterial load and flora of rotifers on mortalities in start-feeding larval turbot. Aquaculture. 170: 229-244.

Munro, P. D., A. Bar bour, T. H. Birkbeck. 1994. Comparison of the gut bacterial flora of start-feeding larval turbot reared under different conditions. J. Appl. Bacteriol. 77:560-566.

Özden, O., K. Fırat, Ş. Saka. 1998. The effects of Culture Selco (Brachionus plicatilis O.F.Müller, 1758) on Rotifer produced in the different culture density and culture volume. (in Turkish) E.U. Journal of Fisheries and Aquatic Sciences. 15 (1-2): 97-103.

Özden, O., E. Büke, K. Fırat, Ş. Saka. 2005. The rearing components of common sea bream (Pagrus pagrus),1st ed. Kızılay-Ankara.

Savaş, S., Ş. Gökpınar. 2002. The quantitative determination of aerobic bacterial flora in rotifer (Brachionus plicatilis) in large scale rotifer cultures. (in Turkish) E.U. Journal of Fisheries and Aquatic Sciences. 19(1-2): 97-103.

Skejermo, J., O. Vadstein. 1993. The effect of microalgae on skin and gut bacterial flora of halibut larvae. Fish Farming Technology Ed. By. Reinertsen H, Dahle, L.A., Jargensen L., and Tvinnereim, The Research Council of Norway, 61 –67.

Skejermo, J., I. Salvasen, G. Qie, Y. Olsen, O. Vadstein. 1997. Microbially matured water: a technique for selection of a non-opportunisticbacterial flora in water that may improve performance of marine larvae. Aquaculture International. 5:13-28.

Suantika, G., P. Dhert, G. Rombaut, J. Vandenberghe, T. De Wolf, P. Sorgeloos. 2001. The use of ozone in a high density recirculation system for rotifers. Aquaculture. 201: 35-49.

Sümbüloglu, K., V. Sümbüloğlu. 2000. Biostatistics. (in Turkish). 9th ed. Ankara.

Vadstein, O., G. Qui, Y. Olsen, I. Salvesen, J. Skejermo, G. Skjak-Braek. 1993. A strategy to obtain microbial control during larval development of marine fish. Fish Farming Technology, 69-75. Rotterdam.