Denizel biyoaktif bileşikler

Yüzlerce yıl boyunca yeni ilaçların temelini doğal ürünler ve bunlardan elde edilmiş bileşikler oluşturmuştur. Sekonder metabolitler olarak adlandırılan bu bileşikler doğada organizmalar tarafından düşmanlarından korunma amacıyla üretilmektedir. Son yıllarda benzer metabolitlerin izole edilmesi ve ayrıca sentetik üretimin yüksek tarama olanakları sunmasının da etkisiyle doğal ürünlere yönelik ilaç araştırmaları oldukça azalmıştır. Bununla birlikte çeşitli patojenlerin hastanelerde ve toplumda dirençli suşlar geliştirmesi giderek daha yaygınlaşmaktadır. Yeni hastalıklar yeni ilaçların keşfini zorunlu hale getirirken, bütün bunlarla mücadele için gerekli olan yeni antimikrobiyallerin geliştirilmesinde ilerleme yavaş olmaktadır. Bu nedenle özellikle sağlık alanındaki bu ve benzeri problemler cytarabine (Ara-c), vidarabine (Vira-A1) ve salinosporamide A gibi yeni küçük molekül yapılı bileşiklerinin keşfinde öncelik olması gerektiğini göstermektedir. Yeni teknolojiler henüz araştırılmamış biyolojik kaynakların doğal ilaç keşiflerinde kullanılmasını sağlayan oldukça etkili akıllı tarama yöntemleri sunmaktadır. Özellikle hızlı genetik sekanslama ile birlikte biyosentetik yolakların manipulasyonundaki ilerlemeler yeni ilaçların keşfi için büyük bir kaynak sunabilecek potansiyele sahiptir. Teknolojideki bu ilerlemeler yeni ilaç keşfine ve doğal ürünlere olan ilginin tekrar artmasını da sağlamıştır. Bu derlemede, yeni bileşikler için son derece zengin bir kaynak sunarken aynı zamanda tedavi edici potansiyeli olabilecek denizel kimyasal çeşitliliği bir araya getiren denizel metabolitler üzerinde durulmuştur.

Marine bioactive compounds

Natural products and their derivate compounds have been underlined of new drugs along centuries. The compounds which are named secondary metabolites are produced by organisms against to predators in nature. Initially various terrestrial plants were investigated for achieve valuable drugs leads. Recent years, pharmaceutical research into natural products has declined on the grounds of isolation of similar metabolites and high-throughput screening of synthetic products. On the other hand, resistant strains of pathogens are increasingly prevalent in hospitals and in the community. New diseases is pressing need to develop new drugs, but progress in developing them has been slow. Therefore, particularly the emergence of health issues suggests that the discovery of new scaffolds such as cytarabine (Ara-c), vidarabine (Vira-A1) and salinosporamide A should be a priority. New technologies provide smart screening methods to discover new natural drugs from untapped biological resources. Especially advances in rapid genetic sequencing, coupled with manipulation of biosynthetic pathways, may provide a vast resource potential for the discovery of new pharmaceuticals. These technological advances encourage renewed interest in natural products and the natural drug discovery. In this review, we focused on marine metabolites also bring the marine chemical diversity up to its therapeutic potential, while it is offering an extremely rich resource for novel compounds.

___

  • Arthaud, I.D.B., Rodrigues, F.A.R., Jimenez, P.C., Montenegro, R.C., Angelim, A.L., Maciel, V.M.M., Silveira, E.R., Freitas, H.P.S., Sousa, T.S., Pessoa, O.D.L., Lotufo, T.M.C., Costa-Lotufo, L.V., 2012. Studies on the Secondary Metabolites of a Pseudoalteromonas sp. Isolated from Sediments Collected at the Northeastern Coast of Brazil, Chemistry & Biodiversity, 9: 418–427. doi: 10.1002/cbdv.201100092
  • Ausubel, J., Crist, D.T., Waggoner, P.E., 2010. First Census of Marine Life 2010: Highlights of a decade of discovery, Washington DC: Census of Marine Life, 68p.
  • Baker, D.D., Alvi, A.A., 2004. Small-molecule natural products: new structures, new activities, Current Opinion in Biotechnology,15: 576– 583p. doi: 10.1016/j.copbio.2004.09.003
  • Bérdy, J., 2005. Bioactive microbial metabolites, Journal of Antibiotics, 58: 1– 26p. doi: 10.1038/ja.2005.1
  • Bernan, V.S., Greenstein, M., Maise, W.M., 1997. Marine microorganisms as a source of new natural products, Advences in Applied Microbiology, 43: 57–89p. doi: 10.1016/S0065-2164(08)70223-5
  • Blunt, J.W., Copp, B.R., Munro, M.H.G., Northcote, P.T., Prinsep, M.R., 2010. Marine natural products, Natural Product Reports, 27:165–237p. doi: 10.1039/B906091J
  • Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H.G., Prinsep, M.R., 2012. Marine natural products, Natural Product Reports, 29:144–222p. doi: 10.1039/C2NP00090C
  • Bugni, T.S., Ireland, C.M., 2004. Marine-derived fungi: a chemically and biologically diverse group of microorganisms, Natural Products Reports, 21: 143–163p. doi:10.1039/b301926h
  • Burgess, J.G., 2012. New and emerging analytical techniques for marine biotechnology, Current Opinion in Biotechnology, 23: 29–33 doi: 10.1039/B301926H
  • Cabrita, M.T., Vale, C., Rauter, A.P., 2010. Halogenated Compounds from Marine Algae, Marine Drugs, 8: 2301-2317p. doi: 10.3390/md8082301
  • Chu, D.T., Plattner, J.J., Katz, L., 1996. New directions in antibacterial research, Journal of Medicinal Chemistry, 39, 3853–3874p. doi: 10.1021/jm960294s
  • Clark, A.M., 1996. Natural products as a resource for new drugs, Pharmaceutical Research, 8, 1133-1144p. doi: 10.1023/A:1016091631721
  • Colegate, S.M., Molyneux, R.J., 2008. An Introduction and Overview, Bioactıve Natural Products Detection, Isolation, and Structural Determination, Taylor & Francis Group, p. 1-9.
  • Cragg, G.M., Newman, D.J., Snader,K.M., 1997. Natural products in drug discovery and development, Journal of Natural Products, 60: 52–60p. doi: 10.1021/np9604893
  • Cragg, G.M., Grothaus, P.G., Newman, D.J., 2009. Impact of Natural Products on Developing New Anti-Cancer Agents, Chemical Reviews, 109: 3012-3043p. doi: 10.1021/cr900019j
  • Cragg, G.M., Newman, D.J., 2013. Natural products: A continuing source of novel drug leads, Biochimica et Biophysica Acta (BBA), 1830: 3670–3695. doi: 10.1016/j.bbagen.2013.02.008
  • DaSilva, E., Iaccarino, M., 1999. Emerging diseases: a global threat, Biotechnology Advances, 17: 363–384p. doi: 10.1016/S0734-9750(99)00024-5
  • DeLong, E.F., 2007. Modern microbial seascapes. Forward Nature Reviews Microbiology, 5: 755–757p. doi: 10.1038/nrmicro1762
  • Ding, L., Maier, A., Fiebig, H.H., Lin, W.H., Peschel, G., Hertweck, C., 2012. Kandenols A−E, eudesmenes from an endophytic Streptomyces sp.of the mangrove tree Kandelia candel, Journal of Natural Products, 75: 2223−2227p. doi: 10.1021/np300387n
  • Engel, S., Jensen, P.R., Fenical, W., 2002. Chemical ecology of marine microbial defence, Journal of Chemical Ecology, 28: 1971–1985p. doi: 10.1023/A:1020793726898
  • El-Gendy, M.M.A., Hawas, U.W., Jaspars, M., 2008. Novel Bioactive Metabolites from a Marine Derived Bacterium Nocardia sp. ALAA 2000, The Journal of Antibiotics, 61: 379–386p. doi: 10.1038/ja.2008.53
  • Faulkner, D.J., 2000. Marine pharmacology, Antonie van Leeuwenhoek, 77: 135–145p. doi: 10.1023/A:1002405815493
  • Faulkner, D.J., 2002. Marine Natural Products, Natural Product Reports, 17: 7-55p. doi: 10.1039/b006897g
  • Ferraro, V., Cruz, I.B., Jorge, R.B., Malcata, F.X., Pintado, M.E., Castro, P.M.L, 2010. Valorisation of natural extracts from marine source focused on marine by-products: A review, Food Research International, 43: 2221–2233p. doi: 10.1016/j.foodres.2010.07.034
  • Fleming, A., 1929. On the antibacterial action of cultures of Penicillium, with special reference to their use in the isolation of B. influenzae, British Journal of Experimental Pathology, 10: 226–236p.
  • Fuller, A.T., Mellows, G., Woolford, M., Banks, G.T., Barrow, K.D., Chain, E.B., 1971. Pseudomonic acid – antibiotic produced by Pseudomonas fluorescens, Nature, 234: 416p. doi: 10.1038/234416a0
  • Gulder, T.A.M., Moore, B.S., 2009. Chasing the treasures of the sea— bacterial marine natural products, Current Opinion in Microbiology, 12: 252–260p. doi: 10.1016/j.mib.2009.05.002
  • Gunasekera, A.S., Sfanos, K.S., Harmody, D.K., Pomponi, S.A., McCarthy, P.J., Lopez, J.V., 2006. An enhanced database of the microorganisms associated with deeper water marine invertebrates, Applied Microbiology and Biotechnology, 66: 373–376p. doi: 10.1007/s00253-004-1763-7
  • Gurgui, C., Piel, J., 2010. Metagenomic approaches to identify and isolate bioactive natural products from microbiota of marine sponges, Metagenomics: Methods and Protocols, Methods in Molecular Biology, 668: 247–264p. doi: 10.1007/978-1-60761-823-2_17
  • Haefner, B., 2003. Drugs from the deep:marine natural products as drug candidates, Drug Discovery Today, 8: 536–544p. doi: 10.1016/S1359-6446(03)02713-2
  • Haygood, M.G., Schmidt, E.W., Davidson, S.K., Faulkner, D.J., 1999. Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology, Journal of Molecular Microbiology and Biotechnology, 1: 33–43p.
  • Hiort, j., Maksimenka, K., Reichert, M., Perovic-Ottstadt, S., Lin, W.H., Wray, V., Steube, K., Schaumann, K., Weber, H., Proksch, P., Ebel, R., MÜller, W.E.G., Bringmann, G., 2004. New Natural products from the sponge- derived fungus Aspergillus niger, Journal of Natural Products, 67
  • Hoang V.L.T., Li Y., Kim S-K, 2008. Cathepsin B inhibitory activities of phthalates isolated from a marine Pseudomonas strain, Bioorganic and Medicinal Chemistry Letters, 18: 2083–2088p. doi: 10.1016/j.bmcl.2008.01.097
  • Hölker,U., Höfer, M., Lenz, J., 2004. Biotechnological advantages of laboratory scale solid state fermentation with fungi, Applied Microbiology and Biotechnology, 64: 175–186p. doi: 10.1007/s00253-003-1504-3
  • Hu, G.P., Yuan, J., Sun, L., She, Z.G., Wu, J.H., Lan, X.J., Zhu, X., Lin , Y.C., Chen, S.P., 2011. Statistical Research on Marine Natural Products Based on Data Obtained between 1985 and 2008, Marine Drugs, 9: 514- 525p. doi: 10.3390/md9040514
  • Hughes, C.H., Fenical, W., 2010. Antibacterials from the sea, Chemistry A European Journal, 16: 12512-12525p. doi: 10.1002/chem.201001279
  • Jensen, P.R., Fenical, W., 1994. Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives, Annual Reviews Microbiology, 48: 559–584p. doi: 10.1146/annurev.mi.48.100194.003015
  • Imhoff, J.F., Labes, A., Wiese, J., 2011. Bio-mining the microbial treasures of the ocean: new natural products, Biotechnology Advances, 29: 468– 482p. doi: 10.1016/j.biotechadv.2011.03.001
  • Isnansetyo, A., Horikawa, M., Kamei, Y., 2001. In vitro anti-methicillin resistant Staphylococcus aureus of 2-4-diacetyl phloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, Journal of Antimicrobial Chemotherapgy, 47: 724–725p. PMID: 11328799. doi:10.1093/oxfordjournals.jac.a002694
  • Isnansetyo, A., Kamei., Y., 2009. Bioactive substances produced by marine isolates of Pseudomonas, Journal of Industrial Microbiology and Biotechnology, 36: 1239-1248p. doi: 10.1007/s10295-009-0611-2
  • Ireland, C.M., Copp, B.R., Foster, M.P., McDonald, L.A., Radisky, D.C., Swersey, J.C., 1993. Biomedical potential of marine products, Attaway, D.H., Zaborsky, O.R. (Eds.) Marine Biotechnology, New York Plenum Press, Vol. 1, p.1.
  • Kjer, J., Debbab, A., Aly, A.H., Proksch, P., 2010. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products, Nature Protocols, 5: 479-490p. doi: 10.1038/nprot.2009.233
  • Lam, K.S., 2006. Discovery of novel metabolites from marine actinomycetes, Current Opinion in Microbiology, 9: 245–251p. doi: 10.1016/j.mib.2006.03.004
  • Lang, S., Hüners, M., Lurtz, V., 2005. Bioprocess Engineering Data on the Cultivation of Marine Prokaryotes and Fungi Natural Products Drug Discovery, Springer, 29-62 p. doi: 10.1007/b135822
  • Leal, M.G., Puga, J., Serôdio,J., Gomes N.C.M., Calado, R., 2012. Trends in the Discovery of New Marine Natural Products from Invertebrates over the Last Two Decades – Where and What Are We Bioprospecting?, PLos One, 7: 1-15p. doi: 10.1371/journal.pone.0030580
  • Lee, Y.K., Lee, J.H., Lee, H.K., 2001. Microbial symbiosis in marine sponges, The Journal of Microbiology, 39: 254-264p.
  • Le Calvez, T., Burgaud, G., Mahé, S., Barbier, G., Vandenkoornhuyse, P., 2009. Fungal Diversity in Deep-Sea Hydrothermal Ecosystems, Applied And Environmental Microbiology, 75: 6415–6421p. doi: 10.1128/AEM.00653-09
  • Li, J.L., Xiao, B., Park, M., Yoo, E.S., Shin, S., Hong, J., Chung, H.Y., Kim, H.S., Jung, J.H., 2012. PPAR‐γ agonistic metabolites from the ascidian Herdmania momus, Journal of Natural Products, 75: 2082−2087p. doi: 10.1021/np300401g
  • Lozupone, C.A., Knight,R., 2007. Global patterns in bacterial diversity, PNAS, 104: 11436–11440p. doi: 10.1073/pnas.0611525104
  • Mayer, T.U., Kapoor, T.M., Haggarty, S.J., King, R.W., Schreiber, S.L., Mitchison, T.J., 1999. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen, Science, 286, 971–974p. doi: 10.1126/science.286.5441.971
  • Mayer, A.M.S., Glaser, K.B., Cuevas, C., Jacobs, R.S., Kem, W., Little, R.D., McIntosh, J.M., Newman, D.J., Potts, B.C., Shuster D.E., 2010. The odyssey of marine pharmaceuticals: a current pipeline perspective, Trends in Pharmacological Sciences, 31: 255–265p. doi: 10.1016/j.tips.2010.02.005
  • Mudianta, I.W., Adams, T.S., Andrews, K.T., Davis, R.A., Hadi, T.A., Hayes, P.Y., Garson, M.J., 2012. Psammaplysin derivatives from the Balinese marine sponge Aplysinella strongylata, Journal of Natural Products, 75: 2132−2143p. doi: 10.1021/np300560b
  • Needham, J., Kelly, M.T., Ishige, M., Andersen, R.J., 1994. Andrimid and moiramides A-C, metabolites produced in culture by a marine isolate of the bacterium Pseudomonas fluorescens structure elucidation and biosynthesis, Journal of Organic Chemistry, 59: 2058–2063p. doi: 10.1021/jo00087a020
  • Newman, D.J., Hill, R.T., 2006. New drugs from marine microbes: the tide is turning, Journal of Industrial Microbiology and Biotechnology, 33: 539– 544p. doi: 10.1007/s10295-006-0115-2
  • Newman, D.J., Cragg, G.M., 2007. Natural products as sources of new drugs over the last 25years, Journal of Natural Products, 70: 461–477p. doi: 10.1021/np068054v
  • Osinga, R., Armstrong, E., Burgess, G., Hoffman, F., Reitner, J., Schumann- Kindel, G., 2001. Sponge-microbe, associations and their importance for sponge bioprocess engineering, doi: 10.1023/A:1012717200362 Hydrobiologia, 461: 55-62p.
  • Paul, V.J., Puglisi, M.P., 2004. Chemical mediation of interactions among marine organisms, Natural Product Reports, 21: 189–209p. doi: 10.1039/B302334F
  • Paul, V.J., Ritson-Williams, R., 2008. Marine chemical ecology, Natural Product Reports, 25: 662–695p. doi: 10.1039/B702742G
  • Paz, Z., Komon-Zelazowska, M., Druzhinina, I.S., Aveskamp, M.M., Shnaiderman, A., Aluma, Y., Carmeli, S., Ilan, M., Yarden, O., 2010. Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge, Fungal Diversity, 44: 17-26p. doi: 10.1007/s13225-010-0020-x
  • Proksch, P., Edrada, R.A., Ebel, R., 2002. Drugs from the seas: current status and microbiological implications, Applied Microbiology Biotechnology, 59: 125–134p. doi: 10.1007/s00253-002-1006-8
  • Querellou, J., 2010. Marine Biotechnology: A New Vision and Strategy for Europe, 2010 Marine Board-ESF Position Paper 15, European Science Foundation, 96p.
  • Radjasa, O.K., Vaske, Y.M., Navarro, G., Vervoort, H.C., Tenney, K., Linington, R.G., Crews, P., 2011. Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants. Bioorganic & Medicinal Chemistry, 19: 6658– 6674p. doi: 10.1016/j.bmc.2011.07.017
  • Rateb, M.E., Ebel, R., 2011. Secondary metabolites of fungi from marine habitats, Natural Products Report, 28: 290–344p. doi: 10.1039/C0NP00061B
  • Rungprom, W., Siwu, E.R.O., Lambert, L.K., Dechsakulwatana, C., Barden, M.C., Kokpol, U., Blanchfield, J.T., Kita, M., Garson, M.J., 2008. Cyclic tetrapeptides from marine bacteria associated with the seaweed Diginea sp. and the sponge Halisarca ectofibrosa, Tetrahedron, 64: 3147-3152p. doi: 10.1016/j.tet.2008.01.089
  • Satpute, S.K., Banat, I.M., Dhakephalkar, P.K., Banpurkar, A.G., Chopade, B.A., 2010. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms, Biotechnology Advances, 28: 436–450p. doi: 10.1016/j.biotechadv.2010.02.006
  • Simon, C., Daniel, R., 2010. Metagenomic analyses: past and future trends, Applied Environmental Microbiology, 77: 1153–11561p. doi: 10.1128/AEM.02345-10
  • Singh, M.P., Kong, F., Janso, E.J., Arias, D., A., Suarez, P. A., Valerie, S. B., Petersen, P.J., Weiss, W.J., Carter, G., Greenstein, M., 2003. Novel alpha-pyrones produced by a marine Pseudomonas sp. F92S91: taxonomy and biological activities, Journal of Antibiotics, 56: 1033–1044p. doi: 10.7164/antibiotics.56.1033
  • Tan, L.K., 2007. Bioactive natural products from marine Cyanobacteria for drug discovery, Phytochemistry, 68: 954–979p. doi: 10.1016/j.phytochem.2007.01.012
  • Taylor, M.W., Radax, R., Wagner, M., 2007. Sponge-associated microorganisms: evolution, ecology and biotechnological potential, Microbiology and Molecular Biology Reviews, 71: 295–347p. doi: 10.1128/MMBR.00040-06
  • Tenover, F.C., Hughes, J.M., 1996. The challenges of emerging infectious diseases, The Journal of The American Medical Association, 275: 300– 304p. doi:10.1001/jama.1996.03530280052036
  • Thakur, N.L., Müller, W.E.G., 2004. Biotechnological potential of marine sponges, Current Science, 86: 1506–1512p.
  • Tran, D.T., Pham, N.B., Fechner, G., Zencak, D., Vu, H.T., Hooper, J.N.A., Quinn, R.J., 2012. Cytotoxic cyclic depsipeptides from the Australian marine sponge Neamphius Huxleyi, Journal of Natural Products, 75: 2200−2208p. doi: 10.1021/np3006474
  • Verdine, G.L., 1996, The combinatorial chemistry of nature, Nature, 384, 11– 13pp. doi:10.1038/384011a0
  • Wang, G., 2006. Diversity and biotechnological potential of the sponge- associated microbial consortia, Journal of Industrial Microbiology and Biotechnology, 33: 545-551p. doi: 10.1007/s10295-006-0123-2
  • Wang, W., Kim, H., Nam, S.J., Rho, B.J., Kang, H., 2012. Antibacterial butenolides from the Korean Tunicate Pseudodistoma antinboja, Journal of Natural Products, 75: 2049−2054p. doi: 10.1021/np300544a
  • Waters, A.L., Hill, R.T., Place, A.R., Hamann, M.T., 2010. The expanding role of marine microbes in pharmaceutical development, Current Opinion in Biotechnology, 21: 780–786p. doi: 10.1016/j.copbio.2010.09.013
  • Wratten, S.J., Wolfe, M.S., Andersen, R.J., Faulkner, D.J., 1977. Antibiotic metabolites from a marine pseudomonad, Antimicrob Agents Chemother, 11:411–414p. PMID: 324390
  • Wiese, J., Ohlendorf, B., Blümel, M., Schmaljohann, R., Imhoff, J.F., 2011. Phylogenetic Identification of Fungi Isolated from the Marine Sponge Tethya aurantium and Identification of Their Secondary Metabolites, Marine Drugs, 9: 561-585p. doi:10.3390/md9040561
  • Won, T.H., Jeon, J., Kim, S.H., Lee, S.H., Rho, B.J., Oh, D.C., Oh, K.B., Shin, J., 2012. Brominated aromatic furanones and related esters from the ascidian Synoicum sp., Journal of Natural Products, 75, 2055−2061p. doi: 10.1021/np3005562
  • Uzair, B., Ahmed, V.U., Mohammad, F.V., Edwards, D.H., 2008. The isolation, purification and biological activity of a novel antibacterial compound produced by Pseudomonas stutzeri, FEMS Microbiology Letters, 279: 243-250p. doi: 10.1111/j.1574-6968.2007.01036.x
  • Wratten, S.J., Wolfe, M.S., Andersen, R.J., Faulkner, D.J., 1977. Antibiotic metabolites from a marine pseudomonad, Antimicrobial Agents and Chemotherapy, 11: 411-414p.
  • Zhang, L., Demain, A.L., 2005. Natural Products Drug Discovery and Therapeutic Medicine, Humana Press Inc., 4-8 p.
  • Zhang, L., An, R., Wang, J., Sun, N., Zhang, S., Hu, J., Kuai, J., 2005. Exploring novel bioactive compounds from marine microbes, Current Opinion in Microbiology, 8: 276–281 p. doi: 10.1016/j.mib.2005.04.008
  • Zhang, Y., Mu, J., Feng, Y., Kang, Y., Zhang, J., Gu, P.J., Wang, Y., Ma, L.F., Zhu, YH., 2009. Broad-Spectrum Antimicrobial Epiphytic and Endophytic Fungi from Marine Organisms: Isolation, Bioassay and Taxonomy, Marine Drugs, 7: 97-112p. doi: 10.3390/md7020097
  • Zhang, S..Y., Yi, Y.H., Tang, H.F., 2006. Bioactive Triterpene Glycosides from the Sea Cucumber Holothuria fuscocinerea, Journal of Natural Products, 69, 1492–1495p. doi: 10.1021/np060106t
  • Zhou, X., Huang, H., Chen, Y., Tan, J., Song, Y., Zou, J., Tian, X., Hua, Y., Ju, J., 2012. Marthiapeptide A ,an anti-infective and cytotoxic polythiazole cyclopeptide from a 60 L scale fermentation of the deep sea-derived Marinactinospora thermotolerans SCSIO 00652, Journal of Natural Products, 75: 2251−2255p. doi: 10.1021/np300554f