GİYİLEBİLİR BİOELEKTRİK İMPEDANS ÖLÇÜM CİHAZININ GEÇERLİLİK VE GÜVENİRLİĞİNİN ARAŞTIRILMASI

Vücut kompozisyonun değerlendirilmesi ve izlenmesi sağlık açısından önemlidir. Gelecekte vücut kompozisyonunu ölçen ve takip eden cihazların daha yaygın kullanılacağına inanılmaktadır.  Bu çalışmanın amacı bant olarak tasarlanan giyilebilir biyoelektrik empedans ölçüm cihazının, güvenilirliğini ve geçerliliğini araştırmak amacıyla laboratuvar tipi biyoelektrik empedans cihazı ile karşılaştırmaktır. Bu çalışma tekrarlanan ölçümlerden oluşan bir laboratuvar çalışmasıdır.  Çalışmaya 199 erkek, 123 kadın toplamda 322 sağlıklı kişi katılmıştır. Katılımcıların vücut kompozisyonları laboratuvar tipi biyoelektrik empedans cihazı ile ölçülerek kaydedildi. Daha sonra katılımcıların vücut kompozisyonları giyilebilir biyoelektrik empedans cihazı ile üç kez ölçülmüş ve veriler kaydedilmiştir. Hem laboratuvar tipi cihaz hem de giyilebilir ölçüm cihazı ile yapılan ölçümlerin sonuçları birbiriyle çok yüksek derecede korelasyon göstermiştir. Erkeklerde, kadınlarda ve tüm grupta iki cihazın yağ kütle ölçümleri arasında anlamlı fark bulunmamıştır. Kas kütlesi verileri değerlendirildiğinde, erkeklerde ve tüm grupta iki cihazın ölçümleri arasında anlamlı bir fark bulunmazken, kadınlarda anlamlı bir fark görülmüştür (p <0,001). Giyilebilir ölçüm cihazı, laboratuvar tipi biyoelektrik empedans cihazı ile karşılaştırıldığında, yağ kütlesi ölçümleri geçerli sonuçlar vermiştir. Kas kütlesi ölçümlerinde ise, sadece kadınların ölçümleri arasında bir farklılık bulunmuştur. Giyilebilir biyoelektrik empedans ölçüm cihazları güvenilirliği değerlendirildiğinde, cihazın güvenilir sonuçlar verdiği görülmüştür. Bu nedenle, cihazın vücut kompozisyonunu ölçme ve takip etme açısından faydalı olacağı sonucuna varılmıştır.

VALIDITY AND RELIABILITY OF THE WEARABLE BIOELECTRICAL IMPEDANCE MEASURING DEVICE

Assessing and monitoring body composition is important for health. It is believed that in the future, wearable devices measuring the body composition, will be more common. The purpose of this study is to compare a wearable bioelectrical impedance measuring device, designed as a band, with a laboratory type of bioelectrical impedance device in order to investigate its reliability and validity. A total of 322 healthy people, 199 men, and 123 women participated in the study.  The participants’ body compositions were measured with the laboratory type of bioelectrical impedance device and recorded. Following these measurements, participants’ body compositions were measured three times with the wearable bioelectrical impedance measuring device and data were recorded. The results of the measurements by both the laboratory type device and the wearable measuring device demonstrated a very high degree of correlations with each other. There were no significant differences between two devices’ fat mass measurements in men, in women and in the whole group. When muscle mass data were evaluated, there were no significant differences between two devices’ measurements in men and in the whole group, but there was a significant difference in women (p < .001). When wearable measuring device was compared with laboratory type of bioelectrical impedance device, fat mass measurement results were valid. However, in muscle mass measurements, there was a difference in women. When the wearable bioelectrical impedance measuring device’s reliability was evaluated, it was demonstrated that the device yielded valid results. Therefore, it is concluded that the device will be useful for self-monitoring the body composition.

___

  • Freedman DS, Mei Z, Srinivasan SR, et al. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. The J Pediatr. 2007;150(1):12-7. e2.
  • Grundy SM, Blackburn G, Higgins M, et al. Physical activity in the prevention and treatment of obesity and its comorbidities: evidence report of independent panel to assess the role of physical activity in the treatment of obesity and its comorbidities. Med Sci Sports Exerc. 1999;31(11):1493-500.
  • Sinning WE. Body composition and athletic performance. Limits of human performance The academy papers. 1985;18:45-56.
  • Buckinx F, Reginster JY, Dardenne N, et al. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study. BMC Musculoskelet Disord. 2015;16:60.
  • Finn KJ, Saint-Maurice PF, Karsai I, et al. Agreement Between Omron 306 and Biospace InBody 720 Bioelectrical Impedance Analyzers (BIA) in Children and Adolescents. Res Q Exerc Sport. 2015;86 Suppl 1:S58-65.
  • Tompuri TT, Lakka TA, Hakulinen M, et al. Assessment of body composition by dual-energy X-ray absorptiometry, bioimpedance analysis and anthropometrics in children: the Physical Activity and Nutrition in Children study. Clin Physiol Funct Imaging. 2015;35(1):21-33.
  • Wang L, Hui SS. Validity of Four Commercial Bioelectrical Impedance Scales in Measuring Body Fat among Chinese Children and Adolescents. Biomed Res Int. 2015;2015:614858.
  • Gray DS, Bray GA, Gemayel N, et al. Effect of obesity on bioelectrical impedance. Am J Clin Nutr. 1989;50(2):255-60.
  • Jonas S, Phillips EM. ACSM's exercise is medicineTM: A clinician's guide to exercise prescription: Lippincott Williams & Wilkins; 2012.
  • Franklin NC, Lavie CJ, Arena RA. Personal health technology: a new era in cardiovascular disease prevention. Postgrad med. 2015;127(2):150-8.
  • Reyes-Ortiz J-L, Oneto L, Samà A, et al. Transition-aware human activity recognition using smartphones. Neurocomputing. 2016;171:754-67.
  • Brodie MA, Lord SR, Coppens MJ, et al. Eight-week remote monitoring using a freely worn device reveals unstable gait patterns in older fallers. IEEE Trans Biomed Eng. 2015;62(11):2588-94.
  • Wang JB, Cadmus-Bertram LA, Natarajan L, et al. Wearable sensor/device (Fitbit One) and SMS text-messaging prompts to increase physical activity in overweight and obese adults: a randomized controlled trial. Telemed J E Health. 2015;21(10):782-92.
  • Aandstad A, Holtberget K, Hageberg R, et al. Validity and reliability of bioelectrical impedance analysis and skinfold thickness in predicting body fat in military personnel. Mil Med. 2014;179(2):208-17.
  • In body Co. Ltd. Inbody Co.Ltd. In body Wearable Instruction Manual , Korea : In body Co. Ltd; 2015.
  • Donner A, Eliasziw M. Sample size requirements for reliability studies. Statistics in medicine, 1987;6(4):441-448.
  • Sherman NW. Statistics in Kinesiology . William J. Vincent, Brigham Young University, and Joseph P. Weir, Des Moines University, 2015, Champaign, IL: Human Kinetics, 2012. Maughan R. An evaluation of a bioelectrical impedance analyser for the estimation of body fat content. Br J Sports Med. 1993;27(1):63-6.
  • Biaggi RR, Vollman MW, Nies MA, et al. Comparison of air-displacement plethysmography with hydrostatic weighing and bioelectrical impedance analysis for the assessment of body composition in healthy adults. Am J Clin Nutr. 1999;69(5):898-903.
  • Heyward VH, Wagner DR. Applied body composition assessment: Human Kinetics, 2004.
  • Collings PJ, Westgate K, Väistö J, et al. Cross-sectional associations of objectively-measured physical activity and sedentary time with body composition and cardiorespiratory fitness in mid-childhood: the PANIC study. Sports Med. 2017;47(4):769-80.