FUTBOLDA YÜKSEK ŞİDDETLİ İNTERVAL VE TEKRARLI SPRİNT ANTRENMANLARIN AEROBİK PERFORMANS ÜZERİNE ETKİSİNİN İNCELENMESİ

Bu çalışmada amaç; yüksek şiddetli interval ve tekrarlı sprint antrenmanlarının, futbolda aerobik dayanıklılık gelişimine etkisini incelemektir. Çalışmaya en az 5 yıldır aktif futbol oynayan, yaşları 18,69±1,64 yıl, ağırlıkları 68,94±5,50 kg ve boyları 177,01±4,78 cm olan 52 erkek gönüllü olarak katılmıştır. Çalışmada katılımcılar, rastgele olarak Yüksek Şiddetli İnterval Antrenman Grubu (YŞİAG, n=20), Tekrarlı Sprint Antrenmanı Grubu (TSAG, n=17) ve Kontrol Grubu (KG, n=15) olmak üzere 3 gruba ayrılmıştır. Tüm katılımcılara, çalışmanın başında ve sonunda, aerobik kapasite testi (Yo-Yo testi) ve laktat testi uygulanmıştır. Tüm grupların tanımlayıcı istatistiksel analizleri yapılmıştır. Ölçülen parametrelerde grup içi normallik dağılım özelliklerinin belirlenmesi için Shapiro Wilk testi yapılmıştır. Her grupta, homojen dağılım gösteren veriler için ön test son test karşılaştırmalarında Paired Samples T testi yapılmıştır. Homojen olmayan veriler için ise ön ve son test karşılaştırmalarında Wilcoxon Signed Rank testi uygulanmıştır. Tüm grupların ön ve son test karşılaştırmalarında, homojen verilerde One Way ANOVA, homojen olmayan verilerde ise Kruskall Wallis H testi yapılmıştır. Tüm testlerde anlamlılık düzeyi p

INVESTIGATION OF THE EFFECT OF HIGH INTENSITY INTERVAL AND REPEATED SPRINT TRAINING ON AEROBIC PERFORMANCE IN FOOTBALL

The purpose of the study was to evaluate the effect of high intensity interval training (HIIT) and repeated sprint (RST) training on aerobic performance in football players. 52 male football players who were actively playing football for at least 5 years participated in this study voluntarily (age: 18.69±1.64, weight: 68.94±5.50 kg, height: 177.01±4.78 cm). Participants were randomly divided into 3 groups: High intensity interval training group (HIITG, n=20), Repeated sprint training group (RSTG, n=17), Control group (CG, n=15). Aerobic capacity test (Yo-Yo) and lactate test were applied to all participants at the beginning and end of training. Descriptive statistical analyses of all groups were made. The Shapiro Wilk test was used to determine the within-group normality distribution characteristics of the measured parameters. In each group, Paired Samples T test was performed in pre-post-test comparisons for data showing homogeneous distribution. For non-homogenous data, Wilcoxsan Signed Rank test was used for pre and post-test comparison. In the pre and post-test comparisons of all groups, One Way ANOVA test was used for homogeneous data and Kruskall Wallis H test was used for non-homogenous data. The significance level was determined as p0.01 in all tests. As a result of the statistical analysis, it was determined that the percentage improvement (HIITG=%5.83, RSTG=%6.91) values of MaxVO2 measurement were similar to each other. Percentage improvement in lactate test was found higher in RSTG (%27.09) compared to HIITG (%7.6). These finding suggest that HIIT and RST are similarly effective on aerobic performance.

___

  • Aslan, A., Acikada, C., Güvenç, A., Gören, H., Hazir, T., Ozkara, A. (2012). Metabolic demands of match performance in young soccer players. Journal of Sports Science and Medicine, 11(1), 170–179. https://doi.org/10.1016/s0033-3506(86)80004-x
  • Bailey, S. J., Wilkerson, D. P., DiMenna, F. J., Jones, A. M. (2009). Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans. Journal of Applied Physiology, 106(6), 1875–1887. https://doi.org/10.1152/japplphysiol.00144.2009
  • Bangsbo, J., Mohr, M., Krustrup, P. (2006). Physical and metabolic demands of training and match-play in the elite football player. Journal of Sports Sciences, 24(7), 665–674. https://doi.org/10.1080/02640410500482529
  • Bangsbo, J., Iaia, F. M., Krustrup, P. (2008). The Yo-Yo intermittent recovery test. Sports Medicine, 38(1), 37–51. https://doi.org/10.2165/00007256-200838010-00004
  • Bogdanis, G. C., Nevill, M. E., Boobis, L. H., Lakomy, H. K. A. (1996). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. Journal of Applied Physiology, 80(3), 876–884. https://doi.org/10.1152/jappl.1996.80.3.876
  • Buchheit, M., Mendez-Villanueva, A., Delhomel, G., Brughelli, M., Ahmaidi, S. (2010). Improving repeated sprint ability in young elite soccer players: Repeated shuttle sprints vs. explosive strength training. Journal of Strength and Conditioning Research, 24(10), 2715–2722. https://doi.org/10.1519/JSC.0b013e3181bf0223
  • Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., Macdonald, M. J., Mcgee, S. L., Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. Journal of Physiology, 586(1), 151–160. https://doi.org/10.1113/jphysiol.2007.142109
  • Carling, C., Le Gall, F., Dupont, G. (2012). Analysis of repeated high-intensity running performance in professional soccer. Journal of Sports Sciences, 30(4), 325–336. https://doi.org/10.1080/02640414.2011.652655
  • Ceylan, L., Demirkan, E., & Küçük, H. (2016). Examination of sprint duration and repeated sprint level of soccer players in different age group. International Journal of Science Culture and Sport, 4, 188-199.
  • Di Salvo, V., Baron, R., Tschan, H., Calderon Montero, F. J., Bachl, N., Pigozzi, F. (2007). Performance characteristics according to playing position in elite soccer. International Journal of Sports Medicine, 28(3), 222–227. https://doi.org/10.1055/s-2006-924294
  • Edwards, A. M., Clark, N., Macfadyen, A. M. (2003). Lactate and ventilatory thresholds reflect the training status of professional soccer players where maximum aerobic power is unchanged. Journal of Sports Science and Medicine, 2(1), 23–29. http://www.ncbi.nlm.nih.gov/pubmed/24616606
  • Eniseler, N., Şahan, Ç., Özcan, I., Dinler, K. (2017). High-Intensity small-sided games versus repeated sprint training in junior soccer players. Journal of Human Kinetics, 60(1), 101–111. https://doi.org/10.1515/hukin-2017-0104
  • Faude, O., Kindermann, W., Meyer, T. (2009). Lactate threshold concepts. Sports Medicine, 39(6), 469–490. https://doi.org/10.2165/00007256-200939060-00003
  • Ferrari Bravo, D., Impellizzeri, F. M., Rampinini, E., Castagna, C., Bishop, D., Wisloff, U. (2008). Sprint vs. interval training in football. International Journal of Sports Medicine, 29(8), 668–674. https://doi.org/10.1055/s-2007-989371
  • Gibala, M. J., McGee, S. L. (2008). Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exercise and Sport Sciences Reviews, 36(2), 58–63. https://doi.org/10.1097/JES.0b013e318168ec1f
  • Helgerud, J., Engen, L. C., Wisloff, U., Hoff, J. (2001). Aerobic endurance training improves soccer performance. / L ’ entrainement d ’ endurance ameliore les performances au football. Medicine and Science in Sports and Exercise, 33(11), 1925–1931.
  • Hoff, J., Helgerud, J. (2004). Endurance and strength training for soccer players: Physiological considerations. Sports Medicine, 34(3), 165–180. https://doi.org/10.2165/00007256-200434030-00003
  • Impellizzeri, F. M., Marcora, S. M., Castagna, C., Reilly, T., Sassi, A., Iaia, F. M., Rampinini, E. (2006). Physiological and performance effects of generic versus specific aerobic training in soccer players. International Journal of Sports Medicine, 27(6), 483–492. https://doi.org/10.1055/s-2005-865839
  • Kelly, D. T., Tobin, C., Egan, B., McCarren, A., O’Connor, P. L., McCaffrey, N., Moyna, N. M. (2018). Comparison of sprint interval and endurance training in team sport athletes. Journal of Strength and Conditioning Research, 32(11), 3051–3058. https://doi.org/10.1519/JSC.0000000000002374
  • Krustrup, P., Mohr, M., Amstrup, T., Rysgaard, T., Johansen, J., Steensberg, A., Pedersen, P. K., Bangsbo, J. (2003). The Yo-Yo intermittent recovery test: Physiological response, reliability, and validity. Medicine and Science in Sports and Exercise, 35(4), 697–705. https://doi.org/10.1249/01.MSS.0000058441.94520.32
  • Kubukeli, Z. N., Noakes, T. D., Dennis, S. C. (2002). Training techniques to improve endurance exercise performances. Sports Medicine, 32(8), 489–509. https://doi.org/10.2165/00007256-200232080-00002
  • Laursen, P. B., Blanchard, M. A., Jenkins, D. G. (2002). Acute high-intensity interval training ımproves tvent and peak power output in highly trained males. Canadian Journal of Applied Physiology, 27(4), 336–348. https://doi.org/10.1139/h02-019
  • Laursen, P. B., Jenkins, D. G. (2002). The scientific basis for high-intensity interval training. Sports Medicine, 32(1), 53–73. https://doi.org/10.2165/00007256-200232010-00003
  • Little, J. P., Safdar, A., Wilkin, G. P., Tarnopolsky, M. A., Gibala, M. J. (2010). A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: Potential mechanisms. Journal of Physiology, 588(6), 1011–1022. https://doi.org/10.1113/jphysiol.2009.181743
  • MacDougall, J. D., Hicks, A. L., MacDonald, J. R., McKelvie, R. S., Green, H. J., Smith, K. M. (1998). Muscle performance and enzymatic adaptations to sprint interval training. Journal of Applied Physiology, 84(6), 2138–2142. https://doi.org/10.1152/jappl.1998.84.6.2138
  • Mohr, M., Krustrup, P., Bangsbo, J. (2003). Match performance of high-standard soccer players with special reference to development of fatigue. Journal of Sports Sciences, 21(7), 519–528. https://doi.org/10.1080/0264041031000071182
  • Mohr, M., Iaia, F. M. (2014). Physiological basis of fatigue resistance training. Sports Science Exchange, 27(126), 1–9.
  • Mohr, M., Mohr, M., Krustrup, P. (2014). Yo-Yo intermittent recovery test performances within an entire football league during a full season. Journal of Sports Sciences, 32(4), 315–327. https://doi.org/10.1080/02640414.2013.824598
  • Krustrup, P., Bangsbo, J. (2005). Fatigue in soccer: A brief review. Journal of Sports Sciences, 23(6), 593–599. https://doi.org/10.1080/02640410400021286
  • Rampinini, E., Coutts, A. J., Castagna, C., Sassi, R., Impellizzeri, F. M. (2007). Variation in top level soccer match performance. International Journal of Sports Medicine, 28(12), 1018–1024. https://doi.org/10.1055/s-2007-965158
  • Sloth, M., Sloth, D., Overgaard, K., Dalgas, U. (2013). Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scandinavian Journal of Medicine and Science in Sports, 23(6), 341–352. https://doi.org/10.1111/sms.12092
  • Sökmen, B., Witchey, R. L., Adams, G. M., Beam, W. C. (2018). Effects of sprint interval training with active recovery vs. endurance training on aerobic and anaerobic power, muscular strength, and sprint ability. Journal of Strength and Conditioning Research, 32(3), 624–631. https://doi.org/10.1519/JSC.0000000000002215
  • Spencer, M., Bishop, D., Dawson, B., Goodman, C. (2005). Physiological and metabolic responses of repeated-sprint activities. Sports Medicine, 35(12), 1025–1044. https://doi.org/10.2165/00007256-200535120-00003
  • Stolen, T., Chamari, K., Castagna, C., Wisloff, U. (2005). Physiology of soccer. Sports Medicine, 35(6), 501–536. https://doi.org/10.2165/00007256-200535060-00004
  • Svensson, M., Drust, B. (2005). Testing soccer players. Journal of Sports Sciences, 23(6), 601–618. https://doi.org/10.1080/02640410400021294
  • Talanian, J. L., Galloway, S. D. R., Heigenhauser, G. J. F., Bonen, A., Spriet, L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, 102(4), 1439–1447. https://doi.org/10.1152/japplphysiol.01098.2006
  • Weston, A. R., Myburgh, K. H., Lindsay, F. H., Dennis, S. C., Noakes, T. D., Hawley, J. A. (1996). Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. European Journal of Applied Physiology, 75(1), 7–13. https://doi.org/10.1007/s004210050119