Wingate testinde anaerobik güç çıktıları: Cinsiyetin, yükün ve sürenin etkisi

Araştırmada Wingate anaerobik testinde (WAnT) yükün, test süresinin ve cinsiyetin güç çıktılarına etkileri incelenmiştir. Araştırmaya, 14’ü kadın 33 orta düzeyde aktif genç yetişkin (yaş; 20.9±1.8 yıl) katılmıştır. Katılımcılar laboratuvarı 7 kez ziyaret etmiştir. İlk ziyarette vücut kompozisyonu ölçümleri ve adaptasyon çalışmaları yapılmıştır. Sonraki 6 ayrı ziyarette ise vücut ağırlıklarının % 8,5’ine ve yağsız vücut ağırlığının %11’ine göre verilen yüklerde en az 2 gün arayla sıra takip etmeksizin 15 sn, 20 sn ve 30 sn WAnT uygulamaları yapılmıştır. Cinsiyetin WAnT güç çıktılarına etkisi split-plot ANOVA ile incelenmiştir. Anlamlılık düzeyi p<0.05 olarak kabul edilmiştir. Erkeklerin; zirve, ortalama ve minimum güç çıktıları kadınlarınkinden yüksektir (p<0.01). Zirve güç, vücut ağırlığına göre verilen yükle kıyaslandığında yağsız vücut ağırlığına göre verilen yükte daha yüksektir (p=0.03). Kısa test sürelerinde ortalama güçteki artış erkeklerde kadınlara göre yüksektir (p=0.01). Yağsız vücut ağırlığına göre verilen yük erkeklerde 15 sn ve 20 sn WAnT uygulamalarında daha yüksek ortalama güç çıktıları ortaya çıkarken, kadınlarda yükün etkisi bulunmamıştır (p=0.03). Kısa test sürelerinde kalp atım hızı azalırken, algılanan zorluk derecesi (AZD) puanları da düşmüştür (p<0.01). Yük faktörü AZD’yi etkilememiştir (p>0.05). Araştırma bulguları, WAnT’la ilgili süre ve yük önerilerinde cinsiyet faktörünün göz önünde bulundurulması gerektiğini göstermektedir.

The anaerobic power output in the Wingate test: Effect of gender, load, and duration

The study aimed to investigate the effects of the interactions among the test durations, loads and gender on the anaerobic power in the Wingate anaerobic test (WAnT). Thirty-three moderately active young adults (age; 20.9±1.8 years), 14of whom are women, participated in the study. The measurements were performed on seven separate visits at least two days apart. On the first visit, body composition measurements and a familiarization process were performed. In the next six visits, 15-s, 20-s and 30-s WAnT at both 8.5% of body mass and 11% of lean body mass were performed randomly. The effects of gender on power output changes in WAnT were examined with split-plot ANOVA. The significance level was set at p<0.05. The load of 11% of lean body mass provided greater peak power compared with a load of 8.5% of body weight (p= 0.03). The increases in mean power at the short duration WAnT were higher in men than in women (p=0.01). In 15-s and 20-s WAnT, high mean power outputs at a load of lean body mass were obtained in men, while the load did not affect the mean power in women (p=0.03). The short-duration WAnT versions led to lower heart rate (HR) and reduced rating of perceived exertion (RPE) (p<0.01). The load did not affect the RPE (p>0.05). The findings indicate that gender differences should be considered regarding the duration of the test and optimal load for WAnT.

___

  • 1. Attia. A., Hachana, Y., Chaabène, H., Gaddour, A., Neji, Z., Shephard, R. J., ve Chelly, M. S. (2014). Reliability and validity of a 20-s alternative to the Wingate anaerobic test in team sport male athletes. Plos One, 9(12), Article e114444.
  • 2. Bar-Or, O. (1987). The Wingate anaerobic test an update on methodology, reliability and validity. Sports Med, 4(6), 381-394. DOI: 10.2165/00007256-198704060-00001
  • 3. Bediz, C. S., Gökbel, H., Kara, M., Uçok, K., Cikrikçi, E., ve Ergene, N. (1998). Comparison of the aerobic contributions to Wingate anaerobic tests performed withtwo different loads. J Sports Med Phys Fitness. 1998;38(1):30-34.
  • 4. Beneke, R., Pollmann, C., Bleif, I., Leithäuser, RM., ve Hütler, M. (2002). How anaerobic is the Wingate anaerobic test for humans. Eur J Appl Physiol, 87(4-5), 388-92. DOI: 10.1007/s00421-002-0622-4
  • 5. Bradley, A. L., ve Ball, T. E. (1992). The Wingate test: effect of load on the power outputs of female athletes and nonathletes. J Strength Cond Res, 6(4), 193-199. DOI:10.1519/1533-4287
  • 6. Calbet, J. A., De Paz, J. A., Garatachea, N., Cabeza de Vaca, S., ve Chavarren, J. (2003). Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J Appl Physiol (1985), 94(2), 668-76. DOI: https://doi.org/10.1007/BF00601809
  • 7. Castañeda-Babarro, A. (2021). The Wingate anaerobic test, a narrative review of the protocol variables that affect the results obtained. Appl Sci, 11(16):7417. https://doi.org/10.3390/app11167417
  • 8. Cohen, J. (1998). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
  • 9. Dotan, R., ve Bar-Or, O. (1983). Load optimization for the Wingate anaerobic test. Eur J Appl Physiol Occup Physiol, 51(3), 409-417. DOI: 10.1007/BF00429077
  • 10. Durnin, J. V., ve Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British Journal of Nutrition, 32(1), 77-97. DOI: https://doi.org/10.1079/BJN19740060
  • 11. Esbjörnsson, M., Sylvén, C., Holm, I., ve Jansson, E. (1993). Fast twitch fibres may predict anaerobic performance in both females and males. Int J Sports Med, 14(5), 257-63. DOI: 10.1055/s-2007-1021174
  • 12. Galán-Rioja, M. Á., González-Mohíno, F., Sanders, D., Mellado, J., ve González-Ravé, J. M. (2020). Effects of body weight vs. lean body mass on Wingate anaerobic test performance in endurance athletes. Int J Sports Med, 41(08), 545-551. DOI: 10.1055/a-1114-6206
  • 13. Ghasemi, A., ve Zahediasl, S. (2012). Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab, 10(2), 486. doi: 10.5812/ijem.3505
  • 14. Gökbel, H., Çalışkan, S., Özbay, Y., ve Bediz, C. Ş. (1993). Farklı yüklerle yapılan Wingate testlerinde güç değerleri. Spor Bilimleri Dergisi, 4(4): 10-16.
  • 15. Granier, P., Mercier, B., Mercier, J., Anselme, F., ve Préfaut, C. (1995). Aerobic and anaerobic contribution to Wingate test performance in sprint and middle-distance runners. Eur J Appl Physiol Occup Physiol, 70(1):58-65. DOI: https://doi.org/10.1007/BF00601809
  • 16. Gratas-Delamarche, A., Le Cam, R., Delamarche, P., Monnier, M., ve Koubi, H. (1994). Lactate and catecholamine responses in male and female sprinters during a Wingate test. Eur J Appl Physiol Occup Physiol, 68(4), 362-6. DOI: 10.1007/BF00571458
  • 17. Hachana, Y., Attia, A., Nassib, S., Shephard, R. J., ve Chelly, M. S. (2012). Test-retest reliability, criterion-related validity, and minimal detectable change of score on an abbreviated Wingate test for field sport participants. J Strength Cond Res, 26(5), 1324-1330. DOI: 10.1519/JSC.0b013e3182305485
  • 18. Hernández-Belmonte, A., Buendía-Romero, Á., Martínez-Cava, A., Courel-Ibáñez, J., Mora-Rodríguez, R., ve Pallarés, J. G. (2020). Wingate test, when time and overdue fatigue matter: validity and sensitivity of two time-shortened versions. Applied Sciences,10(22), 8002. DOI: 10.1519/JSC.0b013e31816a906e
  • 19. Hill, D., ve Smith, J. C. (1993). Gender difference in anaerobic capacity: role of aerobic contribution. Br J Sports Med, 27(1), 45-48. DOI: 10.1136/bjsm.27.1.45
  • 20. Jaafar, H., Rouis, M., Attiogbé, E., Vandewalle, H., ve Driss, T. (2016). A comparative study between the Wingate and force-velocity anaerobic cycling tests: effect of physical fitness. Int J Sports Physiol Perform, 11(1), 48-54. DOI: 10.1123/ijspp.2015-0063
  • 21. Jaafar, H., Rouis, M., Coudrat, L., Attiogbé, E., Vandewalle, H., ve Driss, T. (2014). Effects of load on Wingate test performances and reliability. J Strength Cond Res, 28(12), 3462-3468. DOI: DOI: 10.1519/JSC.0000000000000575
  • 22. Jacobs, I., Bar-Or, O., Karlsson, J., Dotan, R., Tesch, P., Kaiser, P., ve Inbar, O. (1982) Changes in muscle metabolites in females with 30-s exhaustive exercise. Med Sci Sports Exerc, 14(6), 457-460. DOI: 10.1249/00005768-198206000-00009
  • 23. Koşar, Ş. N., ve Işler, A. K. (2004). Üniversite öğrencilerinin wingate anaerobik performans profili ve cinsiyet farklılıkları. Spor Bilimleri Dergisi, 15 (1), 25-38. https://dergipark.org.tr/tr/pub/sbd/issue/16408/171485
  • 24. Krüger, R. L., Peyrard, A., Domenico, H., Rupp, T., Millet, G. Y., ve Samozino, P. (2020). Optimal load for a torque-velocity relationship test during cycling. Eur J Appl Physiol, 120(11), 2455-2466. DOI: 10.1007/s00421-020-04454-x
  • 25. Laurent, C. M., Meyers, M. C., Robinson, C. A., ve Green, J. M. (2007). Cross-validation of the 20- versus 30-s Wingate anaerobic test. Eur J Appl Physiol, 100(6), 645-51. DOI: 10.1007/s00421-007-0454-3
  • 26. Maud, P. J., ve Shultz, B. B. (1986) Gender comparisons in anaerobic power and anaerobic capacity tests. Br J Sports Med, 20(2):5 1-4. doi: 10.1136/bjsm.20.2.51
  • 27. Medbø, J. I., ve Tabata, I. (1993) Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol, 75(4),1654-60. DOI: 10.1152/jappl.1993.75.4.1654
  • 28. Murphy, M. M., Patton, J. F., ve Frederick, F. A. (1986). Comparative anaerobic power of men and women. Aviat Space Environ Med, 57(7), 636-41.
  • 29. Özkaya, Ö (2014). Paradox in currently available Wingate all-out test indices in milliseconds versus traditionally calculated 5 seconds means. Spor Bilimleri Dergisi, 25(2), 104-107.
  • 30. Pazin, N., Bozic, P., Bobana, B., Nedeljkovic, A., ve Jaric, S. (2011). Optimum loading for maximizing muscle power output: the effect of training history. Eur J Appl Physiol,111(9), 2123-2130. DOI: 10.1007/s00421-011-1840-4
  • 31. Perez-Gomez, J., Rodriguez, G. V., Ara, I., Olmedillas, H., Chavarren, J., González-Henriquez, J. J., Dorado, C.., ve Calbet J. A. L. (2008). Role of muscle mass on sprint performance: gender differences. Eur J Appl Physiol, 102(6), 685-694. DOI: 10.1007/s00421-007-0648-8
  • 32. Serresse, O., Lortie, G., Bouchard, C., ve Boulay, M. R. (1988). Estimation of the contribution of the various energy systems during maximal work of short duration. Int J Sports Med, 9(6), 456-60. DOI: 10.1055/s-2007-1025051
  • 33. Silveira-Rodrigues, J. G., Maia-Lima, A., Almeida, P. A. S., França, B. M. S., Campos, B. T., Penna, E., ve Prado, L. S. (2021). Optimal load setting provides higher peak power and fatigue index with a similar mean power during 30-s Wingate anaerobic test in physically active men. Fatigue Biomedicine Health Behavior, 9(4): 175-188. https://doi.org/10.1080/21641846.2021.1989943
  • 34. Smith, J. C., ve Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. Br J Sports Med, 25(4), 196-199. doi: 10.1136/bjsm.25.4.196
  • 35. Stickley, C. D., Hetzler, R. K., ve Kimura, I. F. (2008) Prediction of anaerobic power values from an abbreviated WAnT protocol. J Strength Cond Res, 22(3), 958-65. DOI: 10.1519/JSC.0b013e31816a906e
  • 36. Üçok, K., Gökbel, H., ve Okudan, N. (2005) The Load Of The Wingate Test: According To The Body Weight Or Lean Body Mass? Eur J Gen Med, 2(1), 10-13. https://doi.org/10.29333/ejgm/82259
  • 37. Üçok, K., Mollaoğlu, H., Demirel, R., ve Akgün, L. (2006). Wingate testinde vücut ağırlığına ve yağsız vücut ağırlığına göre belirlenen yüklerle elde edilen güç çıktılarının karşılaştırılması [Comparison of power outputs of wingate tests applied with loads determined from body weight and lean body mass]. Kocatepe Tıp Dergisi, 7, 31-34. https://dergipark.org.tr/tr/pub/kocatepetip/issue/17421/182437
  • 38. Vandewalle, H., Pérès, G., ve Monod, H. (1987) Standard anaerobic exercise tests. Sports Med, 4(4):268-89. DOI: 10.2165/00007256-198704040-00004
  • 39. Vargas, NT., Robergs, R. A., ve Klopp, D. M. (2015). Optimal loads for a 30-s maximal power cycle ergometer test using a stationary start. Eur J Appl Physiol, 115(5), 1087-1094. DOI: 10.1007/s00421-014-3090-8
  • 40. Weber, C. L., Chia, M., ve Inbar, O. (2006). Gender differences in anaerobic power of the arms and legs--a scaling issue. Med Sci Sports Exerc, 38(1), 129-37. DOI: 10.1249/01.mss.0000179902.31527.2c
  • 41. Whaley, M. H., Brubaker, P. H., Otto, R. M., ve Armstrong, L. E. (2006). ACSM's guidelines for exercise testing and prescription: Lippincott Williams & Wilkins.