Genç Futbolcularda 10 x 25 m Tekrarlı Sprint ve 10 x (2 x 12.5 m) Tekrarlı Mekik Sprint Testlerinin Güvenirliği

Tekrarlı sprint testleri(TST) kapsamında altın standart olarak kabul edilecek bir protokol olmadığı için spor bilimleri alanında tekrarlı sprint yeteneğinin değerlendirildiği testlerin güvenirliği önemlidir. Bu çalışmanın amacı genç futbolcularda 30 saniye pasif toparlanmalı 10 x 25 m düz koşu tekrarlı sprint (TST_D) ve 10 x (2 x 12.5 m) tekrarlı mekik sprint testlerinde(TMS) ölçülen performans çıktılarının ve fizyolojik yanıtların test-tekrar test güvenirliğini belirlemektir. Çalışmaya 15 genç futbolcu  (yaş: 17 ± 0.37 yıl;  boy: 177.2 ± 6.06 cm; vücut ağırlığı: 68.1 ± 5.86 kg; spor yaşı: 6.73 ± 0.59 yıl) gönüllü olarak katılmıştır. Katılımcılara zemini suni çim olan futbol sahasında iki hafta içinde birbirini takip eden 2-3 gün ara ile ikişer kez TST_D ve TMS rastgele sıra ile uygulanmıştır. Testlerde toplam sprint zamanı(TSZ), en hızlı sprint zamanı(EHSZ), en yavaş sprint zamanı(EYSZ), laktik asit (dinlenik, test sonu ve toparlanma 3. dakikada), kalp atım hızı (dinlenik, test esnasında ve toparlanma 3. dakikada)  ve 6 ayrı formülle yorgunluk skorları ölçülmüştür. Tekrarlı ölçümler arasındaki farklar için Bağımlı Gruplarda t Testi, güvenirlik için sınıf içi korelasyon katsayısı(SKK), tipik hata(TH) ve varyasyon katsayısı olarak tipik hata(VK_TH) hesaplanmıştır. TMS’de tekrarlı ölçümlerde performans bileşenleri benzer bulunurken(p>0.05),   TST_D’de anlamlı fark saptanmıştır(p<0.05). Her iki testte ölçülen performans bileşenleri için VK_TH % 5’den düşük ancak SKK değerleri TMS için orta düzeyde, TST için düşük düzeydedir.  Her iki testte yorgunluk skorlarının hesaplandığı 6 farklı formül için VK_TH kabul edilemez düzeyde yüksek, SKK ise düşüktür. Her iki testte fizyolojik değişkenler için VK_TH yüksek SKK ise orta ya da yüksek düzeydedir. Bu çalışmanın bulguları genç futbolcularda TMS protokolünün güvenirliğinin TST_D’den daha yüksek olduğunu göstermiştir. Genç futbolcularda tekrarlı sprint performansının ve fizyolojik yanıtların değerlendirilmesinde TMS daha uygun bir protokoldür.   

Reliability of 10 x 25 m Repeated Sprint and 10 x (2 x 12.5 m) Repeated Shuttle Sprint Tests in Young Soccer Players

Since no protocol is accepted as a gold standard within the context of repeated sprint tests, reliability of the tests that evaluate repeated sprint ability is very important in sport sciences. The aim of this study was to determine the test-retest reliability of performance outputs and physiological responses measured in 10x25 m repeated linear sprint test (RLST) and 10x(2x12.5 m) repeated shuttle sprint test (RST_SH) with 30 sec passive recovery in young soccer players. Fifteen young soccer players (age:17 ± 0.37 years; height:177.2 ± 6.06 cm; body mass:68.1 ± 5.86 kg) voluntarily participated in this study. Subjects participated in RLST and RST_SH in random order with 2-3 days intervals for each test within two weeks in an artificial turf. Total sprint time (TST), best sprint time (BST), worst sprint time (WST), lactic acid, heart rate and fatigue scores with 6 different formulas were measured for each test. For the difference between repeated measurements; paired sample t-test, for reliability; intraclass correlation coefficient (ICC), typical error (TE) and typical error as coefficient of variation (CV_TE) were measured. Performance components were parallel in repeated measurement in RST_SH(p>0.05), in RLST on the other hand there was a significant difference(p<0.05). For performance components measured in both tests, CV_TE was less than 5 %, but ICC values were moderate for RST_SH and low for RST_S. CV_TE was unacceptably high for 6 different formulas that calculated fatigue scores in both tests, on the other hand ICC was low. For physiological variables CV_TE was high, ICC was either moderate or high in both tests. The results of the present study indicated that RST_SH protocol had higher reliability when compared with RLST in young soccer players. In addition RST_SH was found to be more suitable for evaluation of repeated sprint performance and physiological responses.

___

  • 1. Andrzejewski M, Chmura P, Konefał M, Kowalczuk E, Chmura J. (2018). Match outcome and sprinting activities in match play by elite German soccer players. J Sports Med Phys Fitness, 58(6), 785-792.
  • 2. Atkinson G, Nevill AM. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med ,26, 217–238.
  • 3. Aunola S, Rusko H. (1984). Reproducibility of aerobic and anaerobic thresholds in 20-50 year old men. Eur J Appl Physiol Occup Physiol, 53(3), 260-266.
  • 4. Bangsbo J, Nørregaard L, Thorsøe F. (1998). Activity profile of competition soccer. Can J Sports Sci, 16(2), 110-1165. Barbero-Álvarez JC, Pedro RE, Nakamura FY. (2013). Validity of a repeated-sprint ability test in young soccer players. Sci sports, 28(5), 127-131.
  • 6. Beaven CM, Maulder P, Pooley A, Kilduff L, Cook C. (2013). Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance. Applied Physiology, Nutrition, and Metabolism, 38(6), 633-637.
  • 7. Ben Abdelkrim N, Castagna C, Jabri I, Battikh T, El Fazaa S, El Ati J. (2010). Activity profile and physiological requirements of junior elite basketball players in relation to aerobic-anaerobic fitness. J Strength Cond Res, 24(9), 2330-2342.
  • 8. Bidaurrazaga-Letona I, Carvalho HM, Lekue JA, Santos-Concejero J, Figueiredo AJ, Gil SM. (2015). Longitudinal field test assessment in a Basque soccer youth academy: A multilevel modeling framework to partition effects of maturation. Int J Sports Med, 36, 234–240.
  • 9. Bishop D, Spencer M, Duffield R, Lawrence S. (2001). The validity of a repeated sprint ability test. J Sci Med Sport, 4(1), 19-29.
  • 10. Buchheit M, Bishop D, Haydar B, Nakamura FY, Ahmaidi S. (2010). Physiological responses to shuttle repeated-sprint running. International Journal of Sports Medicine, 31(06), 402-409.
  • 11. Castagna C, Abt G, Manzi V, Annino G, Padua E, D'Ottavio S. (2008). Effect of recovery mode on repeated sprint ability in young basketball players. J Strength Cond Res, 22(3), 923-929.
  • 12. Castagna C, Lorenzo F, Krustrup P, Fernandes-da-Silva J, Póvoas SCA, Bernardini A, DʼOttavio S. (2018). Reliability characteristics and applicability of a repeated sprint ability test in young male soccer players. J Strength Cond Res, 32(6), 1538-1544.
  • 13. Chmura P, Konefał M, Chmura J, Kowalczuk E, Zając T, Rokita A, Andrzejewski M. (2018). Match outcome and running performance in different intensity ranges among elite soccer players. Biol Sport, 35(2), 197-203.
  • 14. Deprez D, Fransen J, Lenoir M, Philippaerts RM, Vaeyens R. (2015). A retrospective study on anthropometrical, physical fitness and motor coordination characteristics that influence drop out, contract status and first-team playing time in high-level soccer players, aged 8 to 18 years. J Strength Cond Res, 29, 1692–1704.
  • 15. Deprez D, Valente-Dos-Santos J, Silva MJ, Lenoir M, Philippaerts R, Vaeyens R. (2015). Multilevel development models of explosive leg power in high-level soccer players. Med Sci Sports Exerc, 47, 1408–1415.
  • 16. Di Salvo V, Baron R, González-Haro C, Gormasz C, Pigozzi F, Bachl N. (2010). Sprinting analysis of elite soccer players during European Champions League and UEFA Cup matches. J Sports Sci, 28(14),1489-1494.
  • 17. Faude O, Koch T, Meyer T. (2012). Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci, 30(7), 625-631.
  • 18. Ferioli D, Schelling X, Bosio A, La Torre A, Rucco D, Rampinini E. (2019). Match activities in basketball games: comparison between different competitive levels. J Strength Cond Res, 6. doi: 10.1519/JSC.0000000000003039.
  • 19. Fox EL, Bowers RW, Foss ML. (1989). The Physiological Basis of Physical Education and Athletics. William C Brown Pub.
  • 20. Girard O, Mendez-Villanueva A, Bishop D. (2011). Repeated-sprint ability—part I: Factors contributing to fatigue. Sports Med, 41, 673-694.
  • 21. Glaister M, Howatson G, Pattison JR, McInnes G. (2008). The reliability and validity of fatigue measures during multiple-sprint work: An issue revisited. J Strength Cond Res, 22(5),1597-1601.
  • 22. Goodwin ML, Harris JE, Hernández A, Gladden LB. (2007). Blood lactate measurements and analysis during exercise: A guide for clinicians. Journal of Diabetes Science and Technology, 1(4), 558-569.
  • 23. Green HJ, Hughson RL, Orr GW, Ranney DA. (1983). Anaerobic threshold, blood lactate, and muscle metabolites in progressive exercise. Journal of Applied Physiology, 54(4), 1032-1038.
  • 24. Hopkins WG. (2000) Measures of reliability in sports medicine and science. Sports Med, 30(1), 1-15.
  • 25. Hughes MG, Doherty M, Tong RJ, Reilly T, Cable NT. (2006) Reliability of repeated sprint exercise in non-motorised treadmill ergometry. Int J Sports Med, 27(11), 900-904.
  • 26. Hughson RL, Weisiger KH, Swanson GD. (1987). Blood lactate concentration increases as a continuous function in progressive exercise. Journal of Applied Physiology, 62(5), 1975-1981.
  • 27. Impellizzeri FM, Rampinini E, Castagna C, Bishop D, Ferrari Bravo D, Tibaudi A, Wisloff U. (2008). Validity of a repeated-sprint test for football. Int J Sports Med, 29, 899–905.
  • 28. Jaafar H, Rouis M, Coudrat L, Attiogbe E, Vandewalle H, Driss T. (2014). Effects of load on Wingate test performances and reliability. J Strength Cond Res, 28(12), 3462–3468.
  • 29. Koo TK, Li MY. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155-163.
  • 30. Kopec BJ, Dawson BT, Buck C, Wallman KE. (2016). Effects of sodium phosphate and caffeine ingestion on repeated-sprint ability in male athletes. Journal of Science and Medicine in Sport, 19(3), 272-276.
  • 31. McGawley K, Bishop D. (2006). Reliability of a 5 x 6-s maximal cycling repeated-sprint test in trained female team-sport athletes. Eur J Appl Physiol, 98(4), 383-393.
  • 32. Mendez-Villanueva A, Hamer P, Bishop D. (2008). Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol, 103(4), 411-419.
  • 33. Michalsik LB, Aagaard P, Madsen K. (2013). Locomotion characteristics and match-induced impairments in physical performance in male elite team handball players. Int J Sports Med, 34(7), 590-599.
  • 34. Miñano-Espin J, Casáis L, Lago-Peñas C, Gómez-Ruano MÁ. (2017). High speed running and sprinting profiles of elite soccer players. J Hum Kinet, 58, 169-176.
  • 35. Mohr M, Krustrup P, Bangsbo J. (2003). Match performance of high-standard soccer players with special reference to development of fatigue. Journal of Sports Sciences, 21(7), 519-528.
  • 36. Mujika I, Spencer M, Santisteban J, Goiriena JJ, Bishop D. (2009). Age-related differences in repeated-sprint ability in highly trained youth football players. J Sports Sci, 27, 1581–1590.
  • 37. Nakamura FY, Soares-Caldeira LF, Laursen PB, Polito MD, Leme LC, Buchheit M. (2009). Cardiac autonomic responses to repeated shuttle sprints. International Journal of Sports Medicine, 30(11), 808-813.
  • 38. Oliver JL. (2009). Is a fatigue index a worthwhile measure of repeated sprint ability? J Sci Med Sport, 12(1), 20-23.
  • 39. Oliver JL, Williams CA, Armstrong N. (2006). Reliability of a field and laboratory test of repeated sprint ability. Pediatric Exercise Science, 18(3), 339-350.
  • 40. Özdemir FM, Yılmaz A, Kin İşler A. (2014). Genç futbolcularda tekrarlı sprint performansının yaşa göre incelenmesi. Spor Bilimleri Dergisi, 25(1), 1-10.
  • 41. Póvoas SC, Ascensão AA, Magalhães J, Seabra AF, Krustrup P, Soares JM, Rebelo AN. (2014). Analysis of fatigue development during elite male handball matches. J Strength Cond Res, 28(9), 2640-2648.
  • 42. Racinais S, Connes P, Bishop D, Blonc S, Hue O. (2005). Morning versus evening power output and repeated-sprint ability. Chronobiol Int, 22(6),1029-1039.
  • 43. Rampinini E, Bishop D, Marcora SM, Ferrari Bravo D, Sassi R, Impellizzeri FM. (2007). Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int J Sports Med, 28, 228–235.
  • 44. Rienzi E, Drust B, Reilly T, Carter JE, Martin A. (2000). Investigation of anthropometric and work-rate profiles of elite South American international soccer players. J Sports Med Phys Fitness, 40 (2), 162-169.
  • 45. Sánchez-Sánchez J, Bishop D, García-Unanue J, Ubago-Guisado E, Hernando E, López-Fernández J, Colino E, Gallardo L. (2018). Effect of a repeated sprint ability test on the muscle contractile properties in elite futsal players. Sci Rep, 8(1), 17284.
  • 46. Spencer M, Bishop D, Dawson B, Goodman C. (2005). Physiological and metabolic responses of repeated-sprint activities. Sports Medicine, 35(12), 1025-1044.
  • 47. Spencer M, Fitzsimons M, Dawson B, Bishop D, Goodman C. (2006). Reliability of a repeated-sprint test for field-hockey. Journal of Science and Medicine in Sport, 9(1-2), 181-184.
  • 48. Spencer M, Lawrence S, Rechichi C, Bishop D, Dawson B, Goodman C. (2004). Time–motion analysis of elite field hockey, with special reference to repeated-sprint activity. Journal of Sports Sciences, 22(9), 843-850.
  • 49. Spencer M, Pyne D, Santisteban J, Mujika I. (2011). Fitness determinants of repeated-sprint ability in highly trained youth football players. International Journal of Sports Physiology and Performance, 6(4), 497-508.
  • 50. Stølen T, Chamari K, Castagna C, Wisløff U. (2005). Physiology of soccer: An update. Sports Med, 35, 501–536.
  • 51. Weinstein Y, Bediz C, Dotan R, Falk B. (1998). Reliability of peak-lactate, heart rate, and plasma volume following the Wingate test. Medicine and Science in Sports and Exercise, 30(9), 1456-1460.
  • 52. Wong Del P, Chan GS, Smith AW. (2012, September). Repeated-sprint and change-of-direction abilities in physically active individuals and soccer players: training and testing implications. J Strength Cond Res, 26(9), 2324-2330.
  • 53. Zagatto AM, Ardigo LP, Barbieri FA, Milioni F, Dello Iacono A, Camargo BHF, Padulo J. (2017). Performance and metabolic demand of a new repeated-sprint ability test in basketball players: Does the number of changes of direction matter? J Strength Cond Res, 31(9), 2438–2446.