Egzersiz Sırasında Enerji Tüketiminin Hesaplanmasında Yaygın Olarak Kullanılan Endirekt Yöntemlerin Karşılaştırılması

Bu çalışmanın amacı, Dünya Sağlık Örgütü (WorldHealth Organization; WHO) ve Amerikan Spor Hekimleri Derneği (American College of Sports Medicine;ACSM) tarafından önerilen formüle dayalı pratik enerjitüketimi hesaplamalarının istirahat metabolizma hızıve egzersize ait sonuçlarını solunumsal parametrelerleelde edilen enerji tüketimi düzeyleriyle karşılaştırmaktır.Çalışmaya 23,9±6,7 yaş ortalamasına sahip 35 sedanterkadın gönüllü katıldı (Boy: 166,6±6,10 cm; Vücut kütlesi(VK): 66,7±11,6 kg; Beden Kütle İndeksi (BKİ): 23,97±3,4kg·m–2). İstirahat analizlerinin ardından tüm grup BKİölçüm sonuçlarına göre normal (n=20) ve fazla kilolular(n=15) olmak üzere ikiye ayrıldı (BKİ sırasıyla 21,41±1,53kg·m–2 ve 27,39±1,76 kg·m–2). Her katılımcı için istirahatve 30 dakikalık 8 MET’lik egzersize ait toplam enerjitüketimi düzeyleri; hem O2 tüketimi değeri, solunumdeğişim oranına ait enerji eşitliği ve zaman üzerinden,hem de WHO ve ACSM eşitlikleri kullanılarak hesaplandı.İkili karşılaştırmalarda ilişkili guruplar t-testi kullanıldı.Yalnızca fazla kilolu kadınlarda ACSM (1928,64±256,61kkal) eşitliğiyle tahmin edilen istirahat metabolizmahızlarıyla solunumsal parametrelere dayalı olarak hesaplanan değerler (1868,99±223,17 kkal) arasındaki farklaranlamlı değildi (p=0,342). Normal kilolu kadınlarda WHOve ACSM eşitlikleriyle hesaplanan istirahat metabolizmahızı değerleri, laboratuvar ölçümlerine kıyasla oldukçadüşük bulundu (p=0.001). Otuz dakikalık egzersizlereait toplam enerji tüketimi düzeyleri için ne WHO ne deACSM eşitlikleriyle hesaplanan değerler, ne normal ne defazla kilolu kadınlar için toplam enerji tüketimlerini doğrutahmin edemedi (p≤0,019). Çalışmanın sonuçlarına göre,fazla kilolu kadınların istirahat metabolizma hızlarınıdeğerlendirmede (MET x 3,5 x VK (kg))1000 x 5 xt (dk) eşitliğininkullanılabileceği, ancak egzersizlere ait enerji tüketimidüzeylerinin belirlenmesinde solunumsal parametrelere dayalı analizlerin yapılmasının gerekli olduğudeğerlendirildi.

Comparison of Widely Used Indirect Methods in Calculation of Energy Utilization During Exercise

The aim of this study was to compare energy consumption results of resting metabolic rate and exercise obtained from World Health Organization (WHO) and American College of Sports Medicine (ACSM) and energy cost determined by respiratory parameters. 23.9±6.70 years old 35 sedentary females participated in this study (Height: 166.6±6.10 cm; Body mass (BM): 66.7±11.64 kg; Body mass index (BMI): 23.97±3.4 kg·m–2). Following resting measurements, participants were divided two groups such as normal weight (n=20) and overweight (n=15) based on BMI scores (BMI: 21.41±1.53 and 27.39±1.76 kg·m–2, respectively). Caloric costs of resting metabolic rates and total energy expenditures of 30-min exercises were analyzed based on both respiratory parameters such as O2 consumption, energy equivalent of respiratory exchange ratio and exercise durations and energy equations of WHO and ACSM. Paired samples t-test was used for statistical analyses. Results showed that there was no significant difference between resting metabolic rates obtained from ACSM equation and respiratory parameters for only overweight females (1928.64±256.61 vs. 1868.99±223.17 kcal; p=0.342). For the normal weight participants, compare to respiratory parameters, both WHO and ACSM equations underestimated the resting metabolic rate (p=0.001). Neither WHO nor ACSM could be predicted previously determined total energy levels of exercises based on respiratory parameters for both normal and overweight females (p≤0.019). In conclusion, only (MET x 3,5 x BM (kg)) 1000 x 5 xt (min) equation can be used to predict resting metabolic rates of overweight females. Moreover, analyzing of respiratory parameters is necessary to evaluate total energy expenditure of exercises.

___

  • 1. Ainsworth BE, Haskell WL, Leon AS, Jacobs JD, Montoye HJ, Sallis JF ve diğ. (1993). Compendium of physical activities: classification of energy costs of human physical activities. Medicine and science in sports and exercise, 25(1), 71-80.
  • 2. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ ve diğ. (2000). Compendium of physical activities: an update of activity codes and MET intensities. Medicine and science in sports and exercise, 32(9; SUPP/1), S498-S504.
  • 3. American College of Sports Medicine (Ed.) (2013). ACSM’s health-related physical fitness assessment manual. Lippincott Williams & Wilkins.
  • 4. Buttussi, F, Chittaro, L. (2008). MOPET: A contextaware and user-adaptive wearable system for fitness training. Artificial Intelligence in Medicine, 42(2), 153- 163.
  • 5. Byrne NM, Hills AP, Hunter GR, Weinsier RL, Schutz Y. (2005). Metabolic equivalent: one size does not fit all. Journal of Applied physiology, 99(3), 1112-1119.
  • 6. Church TS, Earnest CP, Skinner JS, Blair SN. (2007). Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. Jama, 297(19), 2081-2091.
  • 7. Gaesser GA, Poole DC (1996). The slow component of oxygen uptake kinetics in humans. Exercise and sport sciences reviews, 24(1), 35-70.
  • 8. Gagge AP, Burton AC, Bazett HC. (1941). A practical system of units for the description of the heat exchange of man with his environment. Science, 94(2445), 428- 430.
  • 9. fGarber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte, MJ, Lee IM ve diğ. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and science in sports and exercise, 43(7), 1334-1359.
  • 10. Gunn SM, Brooks AG, Withers RT, Gore CJ, Owen N, Booth ML ve diğ. (2002). Determining energy expenditure during some household and garden tasks. Medicine and science in sports and exercise, 34(5), 895-902.
  • 11. Gunn SM, Ploeg GE, Withers RT, Gore CJ, Owen N, Bauman AE ve diğ. (2004). Measurement and prediction of energy expenditure in males during household and garden tasks. European journal of applied physiology, 91(1), 61-70.
  • 12. Howell W, Earthman C, Reid P, Greaves K, Delany J, Houtkooper L. (1999). Doubly labeled water validation of the Compendium of Physical Activities in lean and obese college women. Medicine & Science in Sports & Exercise, 31(5), S142.
  • 13. Howley ET. (2000). You asked for it Question Authority. ACSM’s Health & Fitness Journal, 4(4), 6-18.
  • 14. Howley ET. (2001). Type of activity: resistance, aerobic and leisure versus occupational physical activity. Medicine & Science in Sports & Exercise, 33(6), S364-S369.
  • 15. Jette M, Sidney K, Blümchen G. (1990). Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clinical cardiology, 13(8), 555-565.
  • 16. Oosthuyse T, Bosch AN, Jackson S. (2005). Cycling time trial performance during different phases of the menstrual cycle. European journal of applied physiology, 94(3), 268-276.
  • 17. Ozkaya O, Colakoglu M, Kuzucu EO, Delextrat A. (2014). An elliptical trainer may render the Wingate all-out test more anaerobic. The Journal of Strength & Conditioning Research, 28(3), 643-650.
  • 18. Peronnet F, Massicotte D. (1991). Table of nonprotein respiratory quotient: an update. Can J Sport Sci, 16(1), 23-29.
  • 19. Poole DC, Ward SA, Gardner GW, Whipp BJ. (1988). Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics, 31(9), 1265-1279.
  • 20. Racette SB, Schoeller DA, Kushner RF. (1995). Comparison of heart rate and physical activity recall with doubly labeled water in obese women. Medicine and science in sports and exercise, 27(1), 126-133.
  • 21. Schmitz MKH. (1998). Interactive and Independent Associations of Physical Activity, Body Weight, and Blood Lipid Levels. University of Minnesota.
  • 22. Schofield WN. (1985). Predicting basal metabolic rate, new standards and review of previous work. Human nutrition. Clinical nutrition, 39, 5-41.
  • 23. Shephard RJ. (2001). Absolute versus relative intensity of physical activity in a dose-response context. Medicine and science in sports and exercise, 33(6 Suppl), S400-18.
  • 24.Swain DP. (2000). Energy cost calculations for exercise prescription. Sports Medicine, 30(1), 17-22.
  • 23. Swinburn BA, Sacks G, Hall KD., McPherson K, Finegood DT, Moodie ML ve diğ. (2011). The global obesity pandemic: shaped by global drivers and local environments. The Lancet, 378(9793), 804-814.
  • 24. Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R. (1994) Measurements during integrative cardiopulmonary exercise testing. In: Principles of Exercise Testing and Interpretation (2nd ed.). Philadephia, PA: Lea & Febiger, 59-60.
  • 25. World Health Organization. (2013). Global Physical Activity Questionnaire (GPAQ) Analysis Guide. 2011. Geneva: World Health Organization.