TAGUCHI METODU KULLANILARAK SÜLFÜRİK ASİT ORTAMINDA LATERİTİK CEVHERDEN NİKEL ÇÖZÜNMESİNİN İNCELENMESİ

Bu çalışmada, lateritik cevherden sülfürik asitli ortamda nikelin farklı koşullarda çözündürülmesi araştırılmıştır. Deney parametreleri olarak; süre, karıştırma hızı, sıcaklık, sülfürik asit derişimi ve tane boyutu seçilmiştir.  Ortogonal dizi (OD) deneysel tasarım planı L16 olarak belirlenmiştir. Bu deneysel tasarım ile farklı şartlarda 16 adet liç deneyi gerçekleştirilmiştir. Sonuçlardan elde edilen metal çözünme verimleri (MÇV) göz önüne alınarak, her test koşulunun sinyal/gürültü (S/G) oranları hesaplanarak anlamlılık analizleri (ANOM) ve optimizasyon çalışmaları gerçekleştirilmiştir. Optimizasyon çalışmaları sonucunda en yüksek MÇV’nin ve S/G oranının Test 10’da elde edildiği görülmüş ve doğrulama deneyi ile karşılaştırılmıştır. Optimizasyon şartlarında yapılan liç testleri sonucunda (S/G) oranının 38,97 ve metal çözünme veriminin (MÇV) ortalama %88,97 olduğu belirlenmiştir. Ayrıca, deney sonuçlarına varyans analizi (ANOVA) uygulanmış ve her faktörün nikel çözündürülmesine olan katkısı belirlenmiştir.

INVESTIGATION OF NICKEL DISSOLUTION FROM LATERITIC ORE IN SULPHURIC ACID MEDIA USING TAGUCHI METHOD

In this study, the dissolution of nickel from lateritic ore in sulphuric acid media using different conditions was investigated. Leaching time, stirring speed, temperature, sulphuric acid concentration and particle size were selected as experimental parameters. The orthogonal array (OA) experimental design plan was determined as L16. 16 leaching experiments were carried out with this experimental design under different conditions. Considering the metal dissolution recoveries (MDR) obtained from the results, signal/noise (S/N) ratios of each test condition were calculated and the analysis of mean and optimization studies were performed. As a result of the optimization works it was seen that the maximum MDR and S/N ratio were obtained in Test 10.  After, this results were compared with the verification experiment. As a result of the leaching tests performed under the optimization conditions, it was determined that the S/N ratio was 38.97 and the metal dissolution recovery (MDR) was 88.97%. In addition, variance analysis (ANOVA) was applied to the test results and the percentage contributions of each factor for the extraction of nickel were determined

___

  • Abali, Y., Bayca, S. U., Arisoy, K. and Vaizogullar, A.I., 2011, Optimization of dolomite ore leaching in hydrochloric acid solutions, Physicochem. Probl. Miner. Process., 46, 253–262.
  • Abali, Y., Copur, M. and Yavuz, M., 2006, Determination of the optimum conditions for dissolution of magnesite with H2SO4 solutions, Ind. J. of Chem. Technol., 13, 391–397.
  • Agacayak, T. and Zedef, V., 2012, Dissolution kinetics of a lateritic nickel ore in sulphuric acid medium, Acta Montanistica Slovaca, 17 (1), 33–41.
  • Asl, M.S., Kakroudi, M. G., Golestani-Fard, F. and Nasiri H., 2015, A Taguchi approach to the influence of hot pressing parameters and SiC content on the sinterability of ZrB2-based composites, Int. J. of Refract. Met. and Hard Mater., 51, 81–90. Ata, O. N., Colak, S., Ekinci, Z. and Çopur, M., 2001, Determination of the optimum conditions for leaching of malachite ore in H2SO4 solutions, Chem. Eng. Technol., 24 (4), 409–413.
  • Atil, H. and Unver, Y., 2000, A different approach of experimental design: Taguchi Method, Pakistan J. of Bio. Sci., 3 (9), 1538–1540.
  • Babaei-Dehkordi, A., Moghaddam, J. and Mostafaei, A., 2013, An optimization study on the leaching of zinc cathode melting furnace slag in ammonium chloride by Taguchi design and synthesis of ZnO nanorods via precipitation methods, Mater. Res. Bull., 48, 4235–4247.
  • Bese, A. V., Borulu, N., Copur, M., Colak, S. and Ata, O. N., 2010, Optimization of dissolution of metals from Waelz sintering waste (WSW) by hydrochloric acid solutions, Chem. Eng. J., 162, 718–722.
  • Copur, M., 2002, An optimization study of dissolution of Zn and Cu in ZnS concentrate with HNO3 solutions, Chem. Biochem. Eng. Q., 16 (4), 191–197.
  • Dalvi, A. D., Bacon, W. and Osborne, R. C., 2004, The past and the future of nickel laterites. PDAC 2004 International Conference Trade Show and Investors Exchange, Toronto.
  • Deepatana, A., Tang, J. A. and Valix, M., 2006, Comparative study of chelating ion exchange resins for metal recovery from bioleaching of nickel laterite ores, Miner. Eng. 19, 1280–1289.
  • Demir, F. and Donmez, B., 2008, Optimization of the dissolution of magnesite in citric acid solutions, Int. J. Miner. Process., 87, 60–64.
  • Dogan, T. H. and Yartasi, A., 2014, Optimization of dissolution of ulexite in phosphate acid solutions, J. Chem. Soc. Pak., 36 (4), 601–605.
  • Dönmez, B., Celik, C., Colak, S. and Yartasi, A., 1998, The dissolution optimization of copper from anode slime in H2SO4 solutions, Ind. & Eng. Chemistry Res., 37 (8), 3382–3387.
  • Düzyol, S., 2016, Taguchi Deneysel Tasarım Metodu Kullanılarak Karadon (Zonguldak) Kömürünün Yağ Aglomerasyonu Davranışının İncelenmesi, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 31(2), 77–-84. Georgiou, D. and Papangelakis, G. V., 1998, Sulphuric acid pressure leaching of a limonitic laterite: chemistry and kinetics, Hydrometallurgy, 49, 23–46.
  • Golightly, J. P., 1981, Nickeliferous laterite deposits, Econ. Geol., 75 (1), 710–735.
  • Hoatson, D. M., Subhash, J. and Jaques, A. L., 2006, Nickel sulphide deposits in Australia: Characteristics, resources, and potential. Ore geology reviews, 29, 177–241.
  • Ilyas, S., Bhatti, H. N., Bhatti, I. A., Sheikh, M. A. and Ghauri, M. A., 2010, Bioleaching of metal ions from low grade sulphide ore: Process optimization by using orthogonal experimental array design, African J. of Biotechnol., 9 (19), 2801–2810. Luo, W., Feng, Q., Ou, L., Zhang, G. and Chen, Y., 2010, Kinetics of saprolitic laterite leaching by sulphuric acid at atmospheric pressure, Miner. Eng., 23 (6), 458–462.
  • Mezarcıöz, S. ve Oğulata, R. T., 2010, Süprem Kumaşlarda Patlama Mukavemeti Değerinin Taguchı Ortogonal Dizayna Göre Optimizasyonu, Tekstil ve Konfeksiyon, 4, 320–328.
  • Moghaddam, J., Sarraf-Mamoory, R., Abdollahy, M., and Yamini, Y., 2006, Purification of zinc ammoniacal leaching solution by cementation: Determination of optimum process conditions with experimental design by Taguchi’s method, Sep. Purif. Technol., 51, 157–164.
  • Roy, R. K., 1995, A Primer on the Taguchi Method. Van Nostrand Reinhold, New York.
  • Rubisov, D. H., Krowinkel, J. M., and Papangelakis, V. G., 2000, Sulphuric acid pressure leaching of laterites universal kinetics of nickel dissolution for limonites and limonitic/saprolitic blends, Hydrometallurgy, 58 (1), 1−11.
  • Safarzadeh, M. S., Moradkhani, D., Ilkhchi, M. O., and Golshan, N. H., 2008, Determination of the optimum conditions for the leaching of Cd–Ni residues from electrolytic zinc plant using statistical design of experiments, Sep. Purif. Technol., 58, 367–376.
  • Soler, J. M., Cama, J., Galí, S. Meléndez, W., Ramírez, A., and Estanga, J., 2008, Composition and dissolution kinetics of garnierite from the Loma de Hierro Ni-laterite deposit, Venezuela, Chem. Geo., 249 (1/2), 191−202.
  • Stopic, S., Friedrich, B. and Fuchs, R., 2002, Kinetics of sulphuric acid leaching of the Serbian nickel laterite ore under atmospheric pressure, Metalurgica J. of Metall., 8 (3), 235–244.
  • Taguchi, G. (1987). System of Experimental Design. Quality Resources, New York.
  • TMMOB Maden Mühendisleri Odası, 2012, Nikel Raporu, Ankara.
  • Zolfaghari, G., Esmaili-Sari, A., Anbia, M., Younesi, H., Amirmahmoodi, S. and Ghafari-Nazari, A., 2011, Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon, J. of Hazard. Mater., 192, 1046–1055.
  • Ata, O. N., Colak, S., Ekinci, Z. and Çopur, M., 2001, Determination of the optimum conditions for leaching of malachite ore in H2SO4 solutions, Chem. Eng. Technol., 24 (4), 409–413.
  • Luo, W., Feng, Q., Ou, L., Zhang, G. and Chen, Y., 2010, Kinetics of saprolitic laterite leaching by sulphuric acid at atmospheric pressure, Miner. Eng., 23 (6), 458–462.
  • Georgiou, D. and Papangelakis, G. V., 1998, Sulphuric acid pressure leaching of a limonitic laterite: chemistry and kinetics, Hydrometallurgy, 49, 23–46.