Engellerle Donatılmış Oluklu Bir Kanal İçerisindeki Akış ve Isı Transferi Karakteristiklerinin Sayısal Olarak İncelenmesi

Bu çalışmada engellerle donatılmış oluklu bir kanalın türbülanslı akış ve ısı transferi karakteristikleri sayısal olarak incelenmiştir. Engeller kanal alt yüzeyine akışa göre üç farklı açıda (450, 900 ve 1350) yerleştirilmiştir. Hız ve türbülans kinetik enerji konturları ve ortalama Nusselt sayısı, sürtünme faktörü, basınç düşüşü ve termal-hidrolik performans değerlendirme kıstas dağılımları sunulmuştur. En yüksek Nusselt sayısı ve performans değerlendirme kıstası, sırasıyla, =450 =900 and =1350 oluklu-engelli kanallar için elde edilmiştir.

Numerical Investigation of Flow and Heat Transfer Characteristics in a Corrugated Channel Equipped With Obstacles

In this study, the turbulent flow and heat characteristics of a corrugated channel equipped with obstacles were investigated experimentally. The obstacles were placed on the bottom wall of the channel at three different angles of =450, 900 and 1350 with respect to the incoming flow. The velocity and turbulence kinetic energy contours and average Nusselt number, friction factor, pressure drop and thermal-hydraulic performance evaluation criteria distributions were presented. The highest Nusselt number and performance evaluation criteria values were obtained, respectively, for corrugated channels with obstacles with =450 =900 and =1350.

___

  • Ahn, S. W. (2001). The Effects of Roughness Types on Friction Factors and Heat Transfer in Roughened Rectangular Duct. Int. Comm. Heat Mass Transfer, 28 (7), 933-942. https://doi.org/10.1016/S0735-1933(01)00297-4
  • Ajeel, R. K., Salim, WS-IW. & Hasnan, K. (2019). Experimental and Numerical Investigations of Convection Heat Transfer in Corrugated Channels Using Alumina Nanofluid Under a Turbulent Flow Regime. Chemical Engineering Research and Design, 148, 202-217. https://doi.org/10.1016/j.cherd.2019.06.003
  • Casarsa, L. & Arts, T. (2005). Experimental Investigation of the Aerothermal Performance of a High Blockage Rib-Roughened Cooling Channel. ASME J. Turbomachinery, 127 (3), 580-588. https://doi.org/10.1115/1.1928933.
  • Chung, H. S. , Lee, G. H., Nine, M. J, Bae, K. & Jeong, H. M. (2014). Study on the Thermal and Flow Characteristics on the Periodically Arranged Semi-Circular Ribs in a Rectangular Channel. Exp. Heat Transfer, 27 (1), 56-71. https://doi.org/10.1080/08916152.2012.719067
  • Eimsa-ard, S. & Promvonge P. (2009). Thermal Characteristics of Turbulent Rib-Grooved Channel Flows. Int. Comm. Heat Mass Transfer, 36 (7), 705-711. https://doi.org/10.1016/j.icheatmasstransfer.2009.03.025
  • Gururatana, S. (2012). Numerical Simulation of Micro-Channel Heat Sink with Dimpled Surfaces. American Journal of Applied Sciences, 9(3), 399-404. https://doi.org/10.3844/ajassp.2012.399.404
  • Hamad, A. J. & Ajeel, R. K. (2022). Combined Effect of Oblique Ribs and a Nanofluid on the Thermal-Hydraulic Performance of a Corrugated Channel: Numerical Study. J Eng Phys Thermophy, 95, 970-978. https://doi.org/10.1007/s10891-022-02552-5
  • Han, J. C. & Park, J. S. (1988). Developing Heat Transfer in Rectangular Channels with Rib Turbulators. Int. J. Heat Mass Transfer, 31 (1), 183-195. https://doi.org/10.1016/0017-9310(88)90235-9
  • He, Z., Yan, Y., Feng, S., Li, X. & Zhongqing, Y. (2021). Numerical Study of Thermal Enhancement in a Micro-Heat Sink With Ribbed Pin-Fin Arrays. J Therm Anal Calorim, 143, 2163–2177. https://doi.org/10.1007/s10973-020-09739-z
  • Hilo, A. K., Talib, A. R. A, Iborra, A. A, Sultan, M. T. H. & Hamid, M. F A. (2020). Effect of Corrugated Wall Combined with Backward-Facing Step Channel on Fluid Flow And Heat Transfer. Energy, 190, 116294. https://doi.org/10.1016/j.energy.2019.116294
  • Koca, F. (2022). Numerical Investigation of Corrugated Channel with Backward-Facing Step in Terms of Fluid Flow and Heat Transfer. J. Engin. Thermophys. 31, 187–199. https://doi.org/10.1134/S1810232822010143
  • Koca, F. & Güder, T. B. (2022). Numerical Investigation of CPU Cooling with Micro-Pin–Fin Heat Sink in Different Shapes. Eur. Phys. J. Plus 137, 1276. https://doi.org/10.1140/epjp/s13360-022-03489-7
  • Lorenz, S., Mukomilow, D. & Leiner, W. (1995). Distribution of the Heat Transfer Coefficient in a Channel With Periodic Transverse Grooves. Exp. Thermal and Fluid Science, 11(3), 234-242. https://doi.org/10.1016/0894-1777(95)00055-Q
  • Mirzaei, M., Davidson, L., Sohankar, A. & Innings, F. (2013). The Effect of Corrugation on Heat Transfer and Pressure Drop in Channel Flow with Different Prandtl Numbers. Int. J. Heat Mass Transfer, 66, 164-176. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.047
  • Promvonge, P. & Thianpong, C. (2008). Thermal Performance Assessment of Turbulent Channel Flow Over Different Shape Ribs. Int. Comm. Heat Mass Transfer, 35(10), 1327–1334. https://doi.org/10.1016/j.icheatmasstransfer.2008.07.016
  • Ramadhan, A. A., Al Anii, Y. T., Shareef, A. J. (2013). Groove Geometry Effects on Turbulent Heat Transfer and Fluid Flow. Heat Mass Transfer, 49: 185-195. https://doi.org/10.1007/s00231-012-1076-9
  • Selimefendigil, F. & Öztop, H. F. (2017). Forced Convection and Thermal Predictions of Pulsating Nanofluid Flow Over a Backward Facing Step with a Corrugated Bottom Wall. International Int. J. Heat Mass Transfer, 110, 231-247. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.010
  • Wang, L. & Sunden, B. (2007). Experimental Investigation of Local Heat Transfer in a Square Duct with Various-Shaped Ribs. Heat Mass Transfer, 43, 759-766. https://doi.org/10.1007/s00231-006-0190-y
  • Wongcharee, K., Changcharoen, W. & Eiamsa-ard, S. (2011). Numerical Investigation of Flow Friction and Heat Transfer in a Channel with Various Shaped Ribs Mounted On Two Opposite Ribbed Walls. Int. J. Chem. Reactor Eng., 9 (1), A26. https://doi.org/10.1515/1542-6580.2560