İyon değiştirici reçine formunun sulardan fenol giderilmesindeki etkisi

Bu çalışmada, kuvvetli bazik anyon değiştirici reçine (Relite 2AS) ile sulu çözeltilerden fenol giderilmesi incelenmiştir. Fenol giderilmesine; reçine miktarı ve çözelti pH`ının etkisi saptanmıştır. Elde edilen sonuçlar, iyon değiştirici reçine formunun fenol giderilmesinde önemli bir etkiye sahip olduğunu göstermiştir. Hidroksit formundaki reçine ile yapılan çalışmalarda fenol giderilmesine çözelti pH`sinin önemli bir etkisi yok iken, klörür formundaki reçine kullanıldığında ve çözelti pH`si 11` e ayarlandığında fenol giderim yüzdesinin arttığı saptanmıştır. Hidroksit formundaki reçine kullanıldığında fenol giderilmesinin % 57; klorür formundaki reçine kullanıldığında ise % 90 civarında olduğu görülmüştür. Denge çalışmalarında elde edilen sonuçlar Freundlich izoterm modeline uygunluk göstermiştir. Kinetik çalışmalarda elde edilen sonuçlar yalancı ikinci mertebe kinetik modeline uygunluk göstermiştir. Klorür formundaki reçinenin fenol giderim kinetiğinin hidroksit formundaki reçinenin kinetiğinden daha hazlı olduğu saptanmıştır. Klorür formundaki reçine ile 60 dakikada fenolün % 97`si giderilmişken, hidroksit formundaki reçine de 60 dakika da % 50 si giderilmiştir.

The effect of ion exchange resin form on the removal of phenol from water

In this work, removal of phenol from aqueous solutions by strongly basic anion exchange resin (Relite 2 AS) has been investigated. The effect of resin dosage and solution pH on phenol removal  was observed. Obtained results showed that the resin form has an important effect on phenol removal.  In OH form, pH has  slight influence on phenol removal but when the resins were converted to Cl form and solution pH was increased to 11, percent removal of phenol increased. Removal of phenol was 97% in Cl form and 57 % in OH form of resin. The Freundlich model describes the phenol removal onto the two different forms. On the other hand, pseudo-second order kinetic fit well with experimental results. Kinetic of resin in Cl form is faster than in OH form. The 97% of phenol removed from solution in Cl form in 60 minutes. When the OH form was used, 50% of phenol removed from solution.

___

  • Caetano M, Valderrama C, Farran A, Cortina J L, 2009. Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins, J. Colloid Interf. Sci., 338(2): 402-409.
  • Babich H, Davis D L, 1981. Phenol: A review of environmental and health risks, Regul. Toxicol. Pharmacol., 1(1):90-109.
  • SivaKumar N A, Min K., 2011. Removal of phenolic compounds from aqueous solutions by biosorption onto Acacia leucocephala bark powder: Equilibrium and kinetic studies, J. Chil. Chem. Soc., 56(1): 539-545.
  • Sulaymon A H, Abbood D W, Ali A H., 2013. A comparative adsorption/biosorption for the removal of phenol and lead onto granular activated carbon and dried anaerobic sludge, Desal. Wat. Treat., 51(10-12): 2055-2067.
  • Zabneva O V, Smolin S K, Shvidenko O G, Klymenko N A., 2014. Biosorption removal of nitrophenols by activated carbon, J. Water Chem. Tech., 36(2): 97-101.
  • Dixit A, Mungray A K, Chakraborty M., 2012. Photochemical oxidation of phenolic wastewaters and its kinetic study, Desal. Wat. Treat., 40(1-3): 56-62.
  • Samsoni-Todorov A O, Rolya E A, Kochkodan V M, Goncharuk V V., 2008. Photocatalytic destruction of phenol in water in the presence of cerium hydroperoxide, J. Water Chem. Tech., 30(3): 151-156.
  • Liu J, Xie J, Ren Z, Zhang W., 2013. Solvent extraction of phenol with cumene from wastewater, Desal. Wat. Treat., 51(19-21): 3826-3831.
  • Cooney D O, Jin C L., 1985. Solvent extraction of phenol from aqueous solution in a hollow fiber device, Chem. Eng. Commun., 37(1-6): 173-1791.
  • Koseoglu H, Harman B I, Yigit N O, Kabay N, Kitis M., 2011. The impacts of operational conditions on phenol removal by nanofiltration membranes, Desal. Wat. Treat., 26 (1-3): 118-123.
  • Rolya E A, Kochkodan V M, Samsoni-Todorov A O, Goncharuk V V., 2008. The removal of phenol from aqueous solutions by means of a photocatalytic membrane reactor, J. Water Chem. Tech., 30(1): 32-37.
  • İpek İ Y, Kabay N, Yüksel M, Yapıcı D, Yüksel Ü., 2012. Application of adsorption–ultrafiltration hybrid method for removal of phenol from water by hypercrosslinked polymer adsorbents, Desalination, 306: 24-28.
  • Carmona M, DeLucas A, Valverde J L, Velasco B, Rodríguez J F., 2006. Combined adsorption and ion exchange equilibrium of phenol on Amberlite IRA-420, Chem. Eng. J. 117(2):155-160.
  • Ku Y, Lee K C, Wang W., 2005. Removal of Phenols from Aqueous Solutions by Purolite A‐510 Resin, Separ. Sci. Technol., 39(4): 911-923.
  • Streat M, Sweetland L A., 1997. Physical and adsorptive properties of Hypersol-Macronet TM polymers, , React. Funct. Polym., 35(1):99-109.
  • Zhu L, Deng Y, Zhang J, Chen J., 2011. Adsorption of phenol from water by N-butylimidazolium functionalized strongly basic anion exchange resin. J. Colloid Interface Sci., 364(2):462-468.
  • El-Naas M H, Al-Zuhair S, Alhaija M A., 2010. Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon, Chem. Eng. J., 162(3): 997-1005.
  • Chasanov M G, Kunin R, McGarvey F., 1956. Sorption of phenols by anion exchange resins, Ind. Eng. Chem., 48(2):305-309.
  • Ku Y, Lee K C., 2000. Removal of phenols from aqueous solution by XAD-4 resin, J. Hazard. Mater., 80(1): 59-68.
  • Alyüz B, Veli S., 2009. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins, J. Hazard. Mater., 167(1):482-488.
  • Nandi B K, Goswami A, Purkait M K., 2009. Adsorption characteristics of brilliant green dye on kaolin, J. Hazard. Mater., 161(1):387-395.
  • Zhang J, Zhou Q, Ou L., 201. Kinetic, isotherm, and thermodynamic studies of the adsorption of methyl orange from aqueous solution by chitosan/alumina composite. J. Chem. Eng.Data, 57(2):412-419.
  • Ho Y S, McKay G., 1999. Pseudo-second order model for sorption processes, Process Biochem., 34(5):451-465.
  • Ho Y S., 2006. Review of second-order models for adsorption systems, J. Hazard. Mater., 136(3): 681-689.
  • Cortina J L, Arad-Yellin R, Miralles N, Sastre A M, Warshawsky A., 1998. Kinetics studies on heavy metal ions extraction by Amberlite XAD2 impregnated resins containing a bifunctional organophosphorous extractant, React. Funct. Polym., 38(2):269-278.
  • Zagorodni A A, 2006. Ion exchange materials:properties and applications. First edition. London: Elsevier
  • Levenspiel, O. 1972. Chemical Reaction Engineering.3th edition. New York: John Wiley& Sons.