Bitkilerde Hücre Duvarı Mekanizmasında Strese Bağlı Meydana Gelen Savunma Cevapları

Bu derlemede, bitki hücre duvarının yapısı, bileşenleri ve çeşitli biyotik ve abiyotik stres faktörlerine bağlı olarak verdiği yanıtlara değinilmektedir. Hücre duvarı streslere karşı bitki direncinin önemli fiziksel bariyer oluşturarak koruyucu rolü üstlenmektedir. Bunun yanı sıra savunma sisteminde sinyal mekanizmasını oluşturmaktadır. Stresin hücre duvarı metabolizması üzerindeki etkileri, hücre duvarı proteinleri ve enzim faaliyetleri üzerine olmaktadır. Stres faktörlerine karşı duvar mekanizması stres kaynağı ve bitki özelliklerine göre değişim göstermektedir. Bununla birlikte, çoğu durumda, iki ana mekanizma vurgulanabilir: (i) ksiloglukan endotransglukosilaz/ hidrolaz (XTH) düzeyinin artması ve (ii) artan hücre duvarı kalınlaşması, ikincil duvarın hemiselüloz ve lignin birikimi ile güçlendirilmesidir. Bu bilgiler ışığı altında, stres koşullarında biyokütle üretimini arttırabilmek için, hücre duvarı üzerindeki stresin sonuçlarını ortaya çıkarmak amacıyla yeni yaklaşımlar ve farklı hücre duvarı analizleri yapılması hedeflenmektedir. Ayrıca hücre duvarı yapısında etkili olan proteinler ile ilgili ileri düzeyde araştırmalar yapılmasının gerekli olduğu kanısındayız.

Stress Induced Defence Responses in Cell Wall Mechanisms in Plants

In this review, the structure of the plant cell wall, its components and its responses to various biotic and abiotic stress factors are discussed. The cell wall plays a protective role by creating an important physical barrier for plant resistance against stresses. In addition, it creates a signal mechanism in the defense system. The effects of stress on cell wall metabolism are on cell wall proteins and enzyme activities. The wall mechanism against stress factors varies according to the stress source and plant characteristics. However, in most cases, two main mechanisms can be highlighted: (i) increasing the level of xyloglucan endotransglucosylase / hydrolase (XTH) and (ii) increasing cell wall thickening, strengthening the secondary wall by the accumulation of hemicellulose and lignin. In the light of this information, new approaches and different cell wall analyzes are aimed to reveal the results of stress on the cell wall in order to increase biomass production under stress conditions. In addition, we believe that advanced research is required on proteins that are effective in cell wall structure.

___

Büyük, İ., Soydam-Aydın, S., & Aras, S. (2012). Bitkilerin stres koşullarına verdiği moleküler cevaplar. Turkish Bulletin of Hygiene & Experimental Biology/Türk Hijyen ve Deneysel Biyoloji, 69(2).

Dolferus, R. (2014). To grow or not to grow: a stressful decision for plants. Plant Science, 229, 247-261. https://doi.org/10.1016/j.plantsci.2014.10.002

Kaya, A., & Doganlar, Z. B. (2016). Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic. Ecotoxicology and Environmental Safety, 124, 470-479.

Taiz, L., Zeiger, E., Møller, I.M., Murphy, A. (2015). Plant physiology and development No.Ed. 6 pp.761 pp.

Vij, S., & Tyagi, A. K. (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnology Journal, 5(3), 361-380. https://doi.org/10.1111/j.1467-7652.2007.00239.x

Kacar, B., Katlav, V., Öztürk, Ş., (2006). Bitki Fizyolojisi, Nobel Yayın Dağıtım, Ankara.

Bhargava, S., & Sawant, K. (2013). Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding, 132(1), 21-32. https://doi.org/10.1111/pbr.12004

Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026-2032. https://doi.org/10.5897/AJAR10.027

Cabello, S., Lorenz, C., Crespo, S., Cabrera, J., Ludwig, R., Escobar, C., & Hofmann, J. (2014). Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants. Journal of Experimental Botany, 65(1), 201-212. https://doi.org/10.1093/jxb/ert359

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9

Shalata, A., & Tal, M. (1998). The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt‐tolerant relative Lycopersicon pennellii. Physiologia Plantarum, 104(2), 169-174. https://doi.org/10.1034/j.1399-3054.1998.1040204.x

Foyer, C. H., Lelandais, M., & Kunert, K. J. (1994). Photooxidative stress in plants. Physiologia Plantarum, 92(4), 696-717. https://doi.org/10.1111/j.1399-3054.1994. tb03042.x

Edreva, A. (2005). Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agriculture, Ecosystems & Environment, 106(2-3), 119-133. https://doi.org/10.1016/j.agee.2004.10.022

Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D., & Hancock, J. T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany, 53(372), 1237-1247. https://doi.org/10.1093/jexbot/53.372.1237

Van Breusegem, F., & Dat, J. F. (2006). Reactive oxygen species in plant cell death. Plant Physiology, 141(2), 384-390. https://doi.org/10.1104/pp.106.078295

Halliwell, B., Gutteridge, J.M.C. (1989). Protection against oxidants in biological systems: the super oxide theory of oxygen toxicity. In: Halliwell, B., Gutteridge, J.M.C. (Eds.), Free Radicals in Biology and Medicine. Clarendon Press, Oxford, pp. 86–123.

Hématy, K., Cherk, C., & Somerville, S. (2009). Host–pathogen warfare at the plant cell wall. Current opinion in plant biology, 12(4), 406-413. https://doi.org/10.1016/j.pbi.2009.06.007

Berni, R., Luyckx, M., Xu, X., Legay, S., Sergeant, K., Hausman, J. F., Lutts, S., Cai, G., & Guerriero, G. (2019). Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 161, 98-106. https://doi.org/10.1016/j.envexpbot.2018.10.017

Tenhaken, R. (2015). Cell wall remodeling under abiotic stress. Frontiers in Plant Science, 5, 771. https://doi.org/10.3389/fpls.2014.00771

Cho, W. K., Chen, X. Y., Chu, H., Rim, Y., Kim, S., Kim, S. T., Kim, S.W., Park, Z.Y., & Kim, J. Y. (2009). Proteomic analysis of the secretome of rice calli. Physiologia Plantarum, 135(4), 331-341. https://doi.org/10.1111/j.1399-3054.2008.01198.x

Lampugnani, E. R., Khan, G. A., Somssich, M., & Persson, S. (2018). Building a plant cell wall at a glance. Journal of Cell Science, 131(2), jcs207373. https://doi.org/10.1242/jcs.207373

McFarlane, H. E., Döring, A., & Persson, S. (2014). The cell biology of cellulose synthesis. Annual Review of Plant Biology, 65, 69-94. https://doi.org/10.1146/annurev-arplant-050213-040240

Polko, J. K., & Kieber, J. J. (2019). The regulation of cellulose biosynthesis in plants. The Plant Cell, 31(2), 282-296. https://doi.org/10.1105/tpc.18.00760

Juge, N. (2006). Plant protein inhibitors of cell wall degrading enzymes. Trends in Plant Science, 11(7), 359-367. https://doi.org/10.1016/j.tplants.2006.05.006

McCahill, I. W., & Hazen, S. P. (2019). Regulation of cell wall thickening by a medley of mechanisms. Trends in Plant Science, 24(9), 853-866. https://doi.org/10.1016/j.tplants.2019.05.012

Peng, P., & She, D. (2014). Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: A review. Carbohydrate Polymers, 112, 701-720. https://doi.org/10.1016/j.carbpol.2014.06.068

McCann, M. C. (1991). Architecture of the primary cell wall. The Cytoskeletal Basis of Plant Growth and Form, 109-129.

Carpita, N. C., & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3(1), 1-30. https://doi.org/10.1111/j.1365-313X.1993.tb00007.x

Carpita, N. C., & McCann, M. C. (2008). Maize and sorghum: genetic resources for bioenergy grasses. Trends in Plant Science, 13(8), 415-420. https://doi.org/10.1016/j.tplants.2008.06.002

Barrière, Y., Ralph, J., Méchin, V., Guillaumie, S., Grabber, J. H., Argillier, O., Chabbert, B., & Lapierre, C. (2004). Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. Comptes Rendus Biologies, 327(9-10), 847-860. https://doi.org/10.1016/j.crvi.2004.05.010

Sampedro, J., & Cosgrove, D. J. (2005). The expansin superfamily. Genome Biology, 6(12), 1-11.

Eklöf, J. M., & Brumer, H. (2010). The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiology, 153(2), 456-466. https://doi.org/10.1104/pp.110.156844

Sénéchal, F., Graff, L., Surcouf, O., Marcelo, P., Rayon, C., Bouton, S., Mareck, A., Mouille, G., Stintzi, A., Höfte, H., Lerouge, P., Schaller, A., & Pelloux, J. (2014). Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT3. 5, a subtilisin-like serine protease. Annals of Botany, 114(6), 1161-1175. https://doi.org/10.1093/aob/mcu035

Sasidharan, R., Voesenek, L. A., & Pierik, R. (2011). Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Critical Reviews in Plant Sciences, 30(6), 548-562. https://doi.org/10.1080/07352689.2011.615706

Liepman, A. H., Wightman, R., Geshi, N., Turner, S. R., & Scheller, H. V. (2010). Arabidopsis–a powerful model system for plant cell wall research. The Plant Journal, 61(6), 1107-1121. https://doi.org/10.1111/j.1365-313X.2010.04161.x

Vanholme, R., Demedts, B., Morreel, K., Ralph, J., & Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiology, 153(3), 895-905. https://doi.org/10.1104/pp.110.155119

Hamann, T. (2012). Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms. Frontiers in Plant Science, 3, 77. https://doi.org/10.3389/fpls.2012.00077

Seifert, G. J., & Blaukopf, C. (2010). Irritable walls: the plant extracellular matrix and signaling. Plant Physiology, 153(2), 467-478. https://doi.org/10.1104/pp.110.153940

Ralph, J., Bunzel, M., Marita, J. M., Hatfield, R. D., Lu, F., Kim, H., Schatz, P.F., Grabber, J.H., & Steinhart, H. (2004). Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochemistry Reviews, 3(1), 79-96.

Liu, C. J., Miao, Y. C., & Zhang, K. W. (2011). Sequestration and transport of lignin monomeric precursors. Molecules, 16(1), 710-727. https://doi.org/10.3390/molecules16010710

Alejandro, S., Lee, Y., Tohge, T., Sudre, D., Osorio, S., Park, J., Bovet, L., Lee, Y., Geldner, N., Fernie, A.R., & Martinoia, E. (2012). AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Current Biology, 22(13), 1207-1212. https://doi.org/10.1016/j.cub.2012.04.064

Mottiar, Y., Vanholme, R., Boerjan, W., Ralph, J., & Mansfield, S. D. (2016). Designer lignins: harnessing the plasticity of lignification. Current Opinion in Biotechnology, 37, 190-200. https://doi.org/10.1016/j.copbio.2015.10.009

Singh, S., Bashri, G., Singh, A., & Prasad, S. M. (2016). Regulation of Xenobiotics in Higher Plants: Signalling and Detoxification. In Plant Responses to Xenobiotics (pp. 39-56). Springer, Singapore.

Barros, J., Serk, H., Granlund, I., & Pesquet, E. (2015). The cell biology of lignification in higher plants. Annals of Botany, 115(7), 1053-1074. https://doi.org/10.1093/aob/mcv046

Bonawitz, N. D., Im Kim, J., Tobimatsu, Y., Ciesielski, P. N., Anderson, N. A., Ximenes, E., Maeda, J., Ralph, J., Donohoe, B.S., Ladisch, M., & Chapple, C. (2014). Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature, 509(7500), 376-380.

Liljegren, S. J., Ditta, G. S., Eshed, Y., Savidge, B., Bowman, J. L., & Yanofsky, M. F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404(6779), 766-770.

Liu, Q., Zheng, L., He, F., Zhao, F. J., Shen, Z., & Zheng, L. (2015). Transcriptional and physiological analyses identify a regulatory role for hydrogen peroxide in the lignin biosynthesis of copper-stressed rice roots. Plant and Soil, 387(1), 323-336. https://doi 10.1007/s11104-014-2290-7

Moura, J. C. M. S., Bonine, C. A. V., de Oliveira Fernandes Viana, J., Dornelas, M. C., & Mazzafera, P. (2010). Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52(4), 360-376. https://doi.org/10.1111/j.1744-7909.2010.00892.x

Cho, H. T., & Kende, H. (1997). Expansins and internodal growth of deepwater rice. Plant Physiology, 113(4), 1145-1151. https://doi.org/10.1104/pp.113.4.1145

Cho, H. T., & Kende, H. (1997). Expression of expansin genes is correlated with growth in deepwater rice. The Plant Cell, 9(9), 1661-1671. https://doi.org/10.1105/tpc.9.9.1661

Sampedro, J., Carey, R. E., & Cosgrove, D. J. (2006). Genome histories clarify evolution of the expansin superfamily: new insights from the poplar genome and pine ESTs. Journal of Plant Research, 119(1), 11-21. https://doi: 10.1007/s10265-005-0253-z

Cosgrove, D. J. (2000). Expansive growth of plant cell walls. Plant Physiology and Biochemistry, 38(1-2), 109-124. https://doi.org/10.1016/S0981-9428(00)00164-9

Fry, S. C., Smith, R. C., Renwick, K. F., Martin, D. J., Hodge, S. K., & Matthews, K. J. (1992). Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochemical Journal, 282(3), 821-828. https://doi.org/10.1042/bj2820821

Rose, J. K., Braam, J., Fry, S. C., & Nishitani, K. (2002). The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant and Cell Physiology, 43(12), 1421-1435. https://doi.org/10.1093/pcp/pcf171

Shin, Y. K., Yum, H., Kim, E. S., Cho, H., Gothandam, K. M., Hyun, J., & Chung, Y. Y. (2006). BcXTH1, a Brassica campestris homologue of Arabidopsis XTH9, is associated with cell expansion. Planta, 224(1), 32-41. https://doı 10.1007/s00425-005-0189-5

Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H., & Höfte, H. (1998). A plasma membrane‐bound putative endo‐1, 4‐β‐d‐glucanase is required for normal wall assembly and cell elongation in Arabidopsis. The EMBO Journal, 17(19), 5563-5576. https://doi.org/10.1093/emboj/17.19.5563

Mølhøj, M., Pagant, S., & Höfte, H. (2002). Towards understanding the role of membrane-bound endo-β-1, 4-glucanases in cellulose biosynthesis. Plant and Cell Physiology, 43(12), 1399-1406. https://doi.org/10.1093/pcp/pcf163

Ohmiya, Y., Samejima, M., Shiroishi, M., Amano, Y., Kanda, T., Sakai, F., & Hayashi, T. (2000). Evidence that endo‐1, 4‐β‐glucanases act on cellulose in suspension‐cultured poplar cells. The Plant Journal, 24(2), 147-158. https://doi.org/10.1046/j.1365-313x.2000.00860.x

Tsabary, G., Shani, Z., Roiz, L., Levy, I., Riov, J., & Shoseyov, O. (2003). Abnormalwrinkled'cell walls and retarded development of transgenic Arabidopsis thaliana plants expressing endo-1, 4-β-glucanase (cell) antisense. Plant Molecular Biology, 51(2), 213-224.

Trainotti, L., Spolaore, S., Pavanello, A., Baldan, B., & Casadoro, G. (1999). A novel E-type endo-β-1, 4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Molecular Biology, 40(2), 323-332.

Goellner, M., Wang, X., & Davis, E. L. (2001). Endo-β-1, 4-glucanase expression in compatible plant–nematode interactions. The Plant Cell, 13(10), 2241-2255. https://doi.org/10.1105/tpc.010219

Cosgrove, D. J. (1997). Assembly and enlargement of the primary cell wall in plants. Annual Review of Cell and Developmental Biology, 13(1), 171-201.

O'Neill, M. A., & York, W. S. (2018). The composition and structure of plant primary cell walls. Annual Plant Reviews Online, 1-54. https://doi.org/10.1002/9781119312994.apr0067

Pelloux, J., Rusterucci, C., & Mellerowicz, E. J. (2007). New insights into pectin methylesterase structure and function. Trends in Plant Science, 12(6), 267-277. https://doi.org/10.1016/j.tplants.2007.04.001

Micheli, F. (2001). Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends in Plant Science, 6(9), 414-419. https://doi.org/10.1016/S1360-1385(01)02045-3

Leucci, M. R., Lenucci, M. S., Piro, G., & Dalessandro, G. (2008). Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. Journal of Plant Physiology, 165(11), 1168-1180. https://doi.org/10.1016/j.jplph.2007.09.006

Piro, G., Leucci, M. R., Waldron, K., & Dalessandro, G. (2003). Exposure to water stress causes changes in the biosynthesis of cell wall polysaccharides in roots of wheat cultivars varying in drought tolerance. Plant Science, 165(3), 559-569. https://doi.org/10.1016/S0168-9452(03)00215-2

Konno, H., Yamasaki, Y., Sugimoto, M., & Takeda, K. (2008). Differential changes in cell wall matrix polysaccharides and glycoside-hydrolyzing enzymes in developing wheat seedlings differing in drought tolerance. Journal of Plant Physiology, 165(7), 745-754. https://doi.org/10.1016/j.jplph.2007.07.007

Rakszegi, M., Lovegrove, A., Balla, K., Láng, L., Bedő, Z., Veisz, O., & Shewry, P. R. (2014). Effect of heat and drought stress on the structure and composition of arabinoxylan and β-glucan in wheat grain. Carbohydrate Polymers, 102, 557-565. https://doi.org/10.1016/j.carbpol.2013.12.005

Moore, J. P., Vicré‐Gibouin, M., Farrant, J. M., & Driouich, A. (2008). Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiologia Plantarum, 134(2), 237-245. https://doi.org/10.1111/j.1399-3054.2008.01134.x

Schenke, D., Boettcher, C., & Scheel, D. (2011). Crosstalk between abiotic ultraviolet‐B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production. Plant, Cell & Environment, 34(11), 1849-1864. https://doi.org/10.1111/j.1365-3040.2011.02381.x

Parrotta, L., Faleri, C., Guerriero, G., & Cai, G. (2019). Cold stress affects cell wall deposition and growth pattern in tobacco pollen tubes. Plant Science, 283, 329-342. https://doi.org/10.1016/j.plantsci.2019.03.010

Neeragunda Shivaraj, Y., Barbara, P., Gugi, B., Vicré-Gibouin, M., Driouich, A., Ramasandra Govind, S., Devaraja, A., & Kambalagere, Y. (2018). Perspectives on structural, physiological, cellular, and molecular responses to desiccation in resurrection plants. Scientifica, 2018. https://doi.org/10.1155/2018/9464592

Ovečka, M., & Takáč, T. (2014). Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnology Advances, 32(1), 73-86. https://doi.org/10.1016/j.biotechadv.2013.11.011

Domon, J. M., Baldwin, L., Acket, S., Caudeville, E., Arnoult, S., Zub, H., Gillet, F., Lejeune-Henaut, I., Brancourt- Hulmel, M., Pelloux, J., & Rayon, C. (2013). Cell wall compositional modifications of Miscanthus ecotypes in response to cold acclimation. Phytochemistry, 85, 51-61. https://doi.org/10.1016/j.phytochem.2012.09.001

Moura, J. C. M. S., Bonine, C. A. V., de Oliveira Fernandes Viana, J., Dornelas, M. C., & Mazzafera, P. (2010). Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52(4), 360-376. https://doi.org/10.1111/j.1744-7909.2010.00892.x

Tenhaken, R. (2015). Cell wall remodeling under abiotic stress. Frontiers in Plant Science, 5, 771. https://doi.org/10.3389/fpls.2014.00771

Gechev, T. S., Dinakar, C., Benina, M., Toneva, V., & Bartels, D. (2012). Molecular mechanisms of desiccation tolerance in resurrection plants. Cellular and Molecular Life Sciences, 69(19), 3175-3186. https://doı 10.1007/s00018-012-1088-0

Challabathula, D., & Bartels, D. (2013). Desiccation tolerance in resurrection plants: new insights from transcriptome, proteome and metabolome analysis. Frontiers in Plant Science, 4, 482. https://doi.org/10.3389/fpls.2013.00482

Moore, J. P., Nguema-Ona, E. E., Vicré-Gibouin, M., Sørensen, I., Willats, W. G., Driouich, A., & Farrant, J. M. (2013). Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta, 237(3), 739-754. https://doi.org/10.1007/s00425-012-1785-9

Jones, L., Milne, J. L., Ashford, D., & McQueen-Mason, S. J. (2003). Cell wall arabinan is essential for guard cell function. Proceedings of the National Academy of Sciences, 100(20), 11783-11788. https://doi.org/10.1073/pnas.1832434100

Larsen, F. H., Byg, I., Damager, I., Diaz, J., Engelsen, S. B., & Ulvskov, P. (2011). Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy. Biomacromolecules, 12(5), 1844-1850. https://doi.org/10.1021/bm2001928