METAL AND RADIONUCLIDE ACCUMULATION OF SOME CULTIVATED MUSHROOMS

Heavy metals and radionuclides of human origin and naturally occurring in nature are accumulated in plants, animals and fungi. In particular, some fungal species have a high capacity to absorb radionuclides. In this study, some metals (27Al, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu, 66Zn, 75As, 111Cd, 204Hg, 206Pb) and radionuclides (232Th, 238U, 40K, 137Cs) of culture mushrooms such as Pleurotus eryingii, Pleurotus citrinopileatus (cultivated on alder and walnut tree sawdust, separately) and Pleurotus djamor (cultivated on beech and walnut tree sawdust, separately) were investigated. Metal accumulations were determined using Inductively Coupled Plasma – Mass Spectrometer (ICP-MS). Radioactivity measurements were performed by using High Purity Germanium (HPGe) detectors. Among the studied mushrooms, Pleurotus citrinopileatus has drawn attention with highest 52Cr, 55Mn, 60Ni, 63Cu, 66Zn, 204Hg, 206Pb content. Among the radionuclides 232Th, 238U content were not determined in any mushroom species. 137Cs was not detected in any mushrooms except Pleurotus citrinopileatus cultivated on alder tree sawdust (15 ± 3 Bq/kg.). The highest 40K radionuclide content was determined in Pleurotus eryingii mushroom cultivated on alder tree sawdust with 947 ± 32 Bq/kg. It was concluded that the metal and radionuclide content of mushrooms were affected by mushroom type and cultivation conditions.

___

  • [1] Mizuno T., (2002) Medicinal properties and clinical effects of culinary-medicinal mushroom Agaricus blazei Murrill (Agaricomycetideae), International Journal of Medicinal Mushrooms 4(4), 14 pages.
  • [2] Patel Y., Naraian R. and Singh V., (2012) Medicinal properties of Pleurotus species (oyster mushroom): a review, World Journal of Fungal Plant Biology 3(1), 1-12.
  • [3] Chaturvedi V.K., Agarwal S., Gupta K.K., Ramteke P.W. and Singh M., (2018) Medicinal mushroom: boon for therapeutic applications, 3 Biotech 8(8), 334.
  • [4] Phan C.-W., Wang J.-K., Tan E.Y.-Y., Tan Y.-S., Sathiya Seelan J.S., Cheah S.-C. and Vikineswary S., (2019) Giant oyster mushroom, Pleurotus giganteus (Agaricomycetes): Current status of the cultivation methods, chemical composition, biological, and health- promoting properties, Food Reviews International 35(4), 324-341.
  • [5] Shomali N., Onar O., Karaca B., Demirtas N., Cihan A.C., Akata I. and Yildirim O., (2019) Antioxidant, anticancer, antimicrobial, and antibiofilm properties of the culinary-medicinal fairy ring mushroom, Marasmius oreades (Agaricomycetes), International Journal of Medicinal Mushrooms 21(6), 571-582.
  • [6] Sevindik M., (2020) Antioxidant activity of ethanol extract of Daedaleopsis nitida medicinal mushroom from Turkey, Mycopath 16(2), 47-49.
  • [7] Hess J.M., Wang Q., Kraft C. and Slavin J.L., (2017) Impact of Agaricus bisporus mushroom consumption on satiety and food intake, Appetite 117, 179-185.
  • [8] Grimm D. and Wösten H.A., (2018) Mushroom cultivation in the circular economy, Applied Microbiology Biotechnology 102(18), 7795-7803.
  • [9] Sánchez C., (2010) Cultivation of Pleurotus ostreatus and other edible mushrooms, Applied Microbiology Biotechnology 85(5), 1321-1337.
  • [10] Ban-nai T., Yoshida S. and Muramatsu Y., (1994) Cultivation experiments on uptake of radionuclides by mushrooms, Radioisotopes 43(2), 77-82.
  • [11] Chatterjee S., Sarma M.K., Deb U., Steinhauser G., Walther C. and Gupta D.K., (2017) Mushrooms: from nutrition to mycoremediation, Environmental Science Pollution Research 24(24), 19480-19493.
  • [12] Kalač P. and Svoboda L.R., (2000) A review of trace element concentrations in edible mushrooms, Food Chemistry 69(3), 273-281.
  • [13] Michelot D., Siobud E., Doré J.-C., Viel C. and Poirier F., (1998) Update on metal content profiles in mushrooms—toxicological implications and tentative approach to the mechanisms of bioaccumulation, Toxicon 36(12), 1997-2012.
  • [14] Širić I., Humar M., Kasap A., Kos I., Mioč B. and Pohleven F., (2016) Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms, Environmental Science Pollution Research 23(18), 18239-18252.
  • [15] Shah Z., Ashraf M. and Ishtiaq M., (2004) Comparative study on cultivation and yield performance of oyster mushroom (Pleurotus ostreatus) on different substrates (wheat straw, leaves, saw dust), Pakistan Journal of Nutrition 3(3), 158-160.
  • [16] Das N. and Mukherjee M., (2007) Cultivation of Pleurotus ostreatus on weed plants, Bioresource Technology 98(14), 2723-2726.
  • [17] Chang S., Lau O. and Cho K., (1981) The cultivation and nutritional value of Pleurotus sajor-caju, European Journal of Applied Microbiology Biotechnology 12(1), 58-62.
  • [18] Ahmed S.A., Kadam J., Mane V., Patil S. and Baig M., (2009) Biological efficiency and nutritional contents of Pleurotus florida (Mont.) Singer cultivated on different agro-wastes, Nature Science of the Food Industry 7(1), 44-48.
  • [19] Oyetayo O.V. and Ariyo O.O., (2013) Micro and macronutrient properties of Pleurotus ostreatus (Jacq: Fries) cultivated on different wood substrates, Jordan Journal of Biological Sciences 147(898), 1-4.
  • [20] Siwulski M., Rzymski P., Budka A., Kalač P., Budzyńska S., Dawidowicz L., Hajduk E., Kozak L., Budzulak J. and Sobieralski K., (2019) The effect of different substrates on the growth of six cultivated mushroom species and composition of macro and trace elements in their fruiting bodies, European Food Research Technology 245(2), 419-431.
  • [21] Yıldız S., Yılmaz A., Can Z., Kılıç C. and Yıldız Ü., (2017) Total phenolic, flavonoid, tannin contents and antioxidant properties of Pleurotus ostreatus and Pleurotus citrinopileatus cultivated on various sawdust, The Journal of Food 42(3), 315-323.
  • [22] Turhan Ş., Köse A. and Varinlioğlu A., (2007) Radioactivity levels in some wild edible mushroom species in Turkey, Isotopes in Environmental Health studies 43(3), 249-256.
  • [23] Cevik U., Celik N., Celik A., Damla N. and Coskuncelebi K., (2009) Radioactivity and heavy metal levels in hazelnut growing in the Eastern Black Sea Region of Turkey, Food Chemical Toxicology 47(9), 2351-2355.
  • [24] Cevik U., Damla N., Koz B. and Kaya S., (2008) Radiological characterization around the Afsin-Elbistan coal-fired power plant in Turkey, Energy Fuels 22(1), 428-432.
  • [25] Changizi V., Angaji M., Zare M.R. and Abbasnejad K., (2012) Evaluation of 226Ra, 232Th, 137Cs and 40K “Agaricus bisporus” activity in cultivated edible mushroom formed in Tehran Province-Iran, Iranian Journal of Medical Physics 9(4), 239-244.
  • [26] Currie L.A., (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry, Analytical Chemistry 40(3), 586-593.
  • [27] International-Atomic-Energy-Agency, (2001) Department of Nuclear Safety, International Atomic Energy Agency, Transport, post graduate radiation safety course.
  • [28] Müller M., Anke M. and Illing-Günther H., (1997) Aluminium in wild mushrooms and cultivated Agaricus Bisporus, Zeitschrift für Lebensmitteluntersuchung und-Forschung A 205(3), 242-247.
  • [29] Mleczek M., Siwulski M., Stuper-Szablewska K., Sobieralski K., Magdziak Z. and Goliński P., (2013) Accumulation of elements by edible mushroom species II. A comparison of aluminium, barium and nutritional element contents, Journal of Environmental Science Health, Part B 48(4), 308-317.
  • [30] Garcia M., Alonso J. and Melgar M., (2013) Bioconcentration of chromium in edible mushrooms: Influence of environmental and genetic factors, Food Chemical Toxicology 58, 249-254.
  • [31] Vetter J., (1997) Chromium and nickel contents of some common edible mushroom species, Acta Alimentaria 26(2), 163-170.
  • [32] Knap M., Kilian K. and Pyrzynska K., (2007) On-line enrichment system for manganese determination in water samples using FAAS, Talanta 71(1), 406-410.
  • [33] Akyüz M. and Kirbağ S., (2010) Nutritive value of wild edible and cultured mushrooms, Turk J Biol 34, 97-102.
  • [34] Jomova K. and Valko M., (2011) Importance of iron chelation in free radical-induced oxidative stress and human disease, Current Pharmaceutical Design 17(31), 3460-3473.
  • [35] Kula I., Solak M.H., Uğurlu M., Işıloğlu M. and Arslan Y., (2011) Determination of mercury, cadmium, lead, zinc, selenium and iron by ICP-OES in mushroom samples from around thermal power plant in Muğla, Turkey, Bulletin of Environmental Contamination Toxicology 87(3), 276-281.
  • [36] Borovička J. and Řanda Z., (2007) Distribution of iron, cobalt, zinc and selenium in macrofungi, Mycological Progress 6(4), 249.
  • [37] Cempel M. and Nikel G., (2006) Nickel: A review of its sources and environmental toxicology, Polish Journal of Environmental Studies 15(3),
  • [38] Georgopoulos P.G., Wang S.W., Georgopoulos I.G., Yonone-Lioy M.J. and Lioy P.J., (2006) Assessment of human exposure to copper: a case study using the NHEXAS database, Journal of Exposure Science Environmental Epidemiology 16(5), 397-409.
  • [39] Duruibe J.O., Ogwuegbu M. and Egwurugwu J., (2007) Heavy metal pollution and human biotoxic effects, nternational Journal of Physical Sciences 2(5), 112-118.
  • [40] Falandysz J. and Rizal L.M., (2016) Arsenic and its compounds in mushrooms: a review, Journal of Environmental Science Health, Part C 34(4), 217-232.
  • [41] Vetter J., (2004) Arsenic content of some edible mushroom species, European Food Research Technology 219(1), 71-74.
  • [42] Haldimann M., Bajo C., Haller T., Venner T. and Zimmerli B., (1995) Occurrence of arsenic, lead, cadmium, mercury and selenium in cultivated mushrooms, Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und Hygiene 86(5), 463-484.
  • [43] Boening D.W., (2000) Ecological effects, transport, and fate of mercury: a general review, Chemosphere 40(12), 1335-1351.
  • [44] Ferner D., (2001) Toxicity, heavy metals, eMedicine Journal 2(5), 1.
  • [45] Hu Q.-H., Weng J.-Q. and Wang J.-S., (2010) Sources of anthropogenic radionuclides in the environment: a review, Journal of Environmental Radioactivity 101(6), 426-437.
  • [46] Gürgen A., Yıldız S., Çevik U. and Çelik A., (2019) Radionuclide activity concentrations of Agaricus bisporus and Pleurotus ostreatus mushrooms cultivated in different commercial companies, Journal of International Environmental Application Science 14(1), 13-20.
  • [47] Kirchner G. and Daillant O., (1998) Accumulation of 210Pb, 226Ra and radioactive cesium by fungi, Science of the Total Environment 222(1-2), 63-70.
  • [48] Faweya E., Ayeni M. and Kayode J., (2015) Accumulation of natural radionuclides by some edible wild mushrooms in Ekiti State, Southwestern, Nigeria, World Journal of Nuclear Science Technology 5(02), 107.