EFFECT OF DIFFERENT ABUTMENT MATERIALS ON STRESS DISTRIBUTION IN PERIPHERAL BONE AND DENTAL IMPLANT SYSTEM

In this study, the effect of different abutment materials on the stress distribution in bone tissue around the dental implant was investigated using ANSYS packet program based on finite element method. The study aims to examine the stresses, strains and deformations that will occur in the bone, dental implants and abutments with the replacement of abutment materials on the titanium dental implant. Modeling has been prepared in Solidworks program. Titanium was chosen as the dental implant material. Abutment materials were selected as titanium, zirconium, chrome-cobalt and polyetheretherketone. After modeling, necessary load was applied to the abutments and analyzed. This process was repeated for each abutment material. As a result of the analyzes, the stresses, strains and deformations that occurred in the bone, dental implants and abutments were combined into tables. In the conclusion, the differences between the abutment materials were evaluated. Generally, it was found that the lowest values were obtained in the group that chrome-cobalt was used as an abutment material. Therefore, chrome-cobalt can be preferred as an abutment material among all tested materials.

___

  • [1] Ring, M.E., (1995) A Thousand Years of Dental Implants: A Definitive History- Part 1, Compendium Continuing Education Dental 16, 1060-1069.
  • [2] Kaleli, N., Sarac, D., Külünk, S. and Öztürk, Ö., (2018) Effect of Different Restorative Crown and Customized Abutment Materials on Stress Distribution in Single Implants and Peripheral Bone: A Three-Dimensional Finite Element Analysis Study, J Prosthet Dent.119(3), 437-445.
  • [3] Tekin, S., Değer ,Y. and Demirci, F., (2019) Evaluation of the Use of PEEK Material in Implant-Supported Fixed Restorations by Finite Element Analysis, Niger J Clin Pract 22, 1252-1258.
  • [4] Bankoğlu Güngör, M. and Yılmaz, H., (2016) Evaluation of Stress Distributions Occurring on Zirconia and Titanium Implant-Supported Prostheses: A Three-Dimensional Finite Element Analysis, J Prosthet Dent. 116(3), 346-55.
  • [5] Pesqueira, A.A., Goiato, M.C., Filho, H.G., Monteiro, D.R., Santos, D.M., Haddad, M.F., et al. (2014) Use of Stress Analysis Methods to Evaluate the Biomechanics of Oral Rehabilitation with Implants, J Oral Implantol 40, 217-228.
  • [6] Fuh, L.J., Hsu, J.T., Huang, H.L., Chen, M.Y. and Shen, Y.W., (2013) Biomechanical Investigation of Thread Designs and Interface Conditions of Zirconia and Titanium Dental Implants with Bone: Three-Dimensional Numeric Analysis, Int J Oral Maxillofac Implants 28(2), 64-71.
  • [7] Fish, J. and Belytschko T., (2007) A First Course in Finite Elements. USA. 319s., 15-23.
  • [8] Damlar, İ., Özyılmaz, E., Altan, A. and Özyılmaz, E., (2014) Üç Boyutlu Sonlu Eleman Analiz Yöntemiyle İki Ticari Implant Sisteminin Gerilme Dağılımlarının İncelenmesi, Süleyman Demirel Üniversitesi Mühendislik Bilimleri ve Tasarım Dergisi 2(3), 175-180.
  • [9] Jafarian, M., Mirhashemi, F.S. and Emadi, N., (2019) Finite Element Analysis of Stress Distribution Around a Dental Implant with Different Amounts of Bone Loss: An in Vitro Study, Dental and Medical Problems 56(1), 27-32.
  • [10] Djebbar, N., Serier, B. and Bouiadjra, B.A.B., (2018) Stress Distribution of The Variable Dynamic Loading in the Dental Implant: A Three-Dimensional Finite Element Analysis, Journal of Biomimetics, Biomaterials and Biomedical Engineering 31, 44-52.
  • [11] Robau Porrua, A., Perez Rodriquez, Y., Soris Rodriquez, L.M. and Perez Acosta O., (2020) The Effect of Diameter, Length and Elastic Modulus of a Dental Implant on Stress and Strain Levels in Peri-Implant Bone: A 3D Finite Element Analysis, Bio-Medical Materials and Engineering 30, 541-558.
  • [12] Karaman, H., (2018) Dental Implantların Yapısal Analizi, Master Thesis. Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Bursa, Türkiye, 117s.
  • [13] Tuzlalı, M., Öztürk, C. and Zortuk, M., (2018) Vidalı ve Simante Implant Üstü Sabit Restorasyonlarda Stres Dağılımının Karşılaştırılması: Sonlu Elemanlar Analizi Çalışması, Türkiye Klinikleri Journal of the Dental Sciences 24(2), 106-113.
  • [14] Aksan, M.E., Atsü, S. and Bulut, A.C., (2018) İmplant-Protez Bağlantısında Sonlu Eleman Analiz Yöntemi, Atatürk Üniviversitesi Diş Hekimliği Fakültesi Dergisi 28(1), 91-97.
  • [15] Karabudak, F., Zamanlou, H., Yeşildal, R., Bayındır, F. and Şen, S., (2014) Düz ve Açılı Abutmentlere Sahip Titanyum ve Zirkonyum Dental Implantların Gerilme Analizlerinin Karşılaştırılması. Mühendislik ve Makina 55(652), 34-42.
  • [16] Mathieu, V., Vayron, R., Richard, G., Lambert, G., Naili, S., Meningaud, J.P. and Haiat, G., (2014) Biomechanical Determinants of The Stability of Dental Implants: Influence of The Bone–Implant Interface Properties, Journal of Biomechanics 47, 3-13.
  • [17] Subaşı, M. and Karataş, Ç., (2012) Titanyum ve Titanyum Alaşımlarından Yapılan Implantlar Üzerine Inceleme, Politeknik Dergisi 15(2), 87-103.
  • [18] Liu, J., Pan, S., Dong, J., Mob, Z., Fan, Y. and Feng, H., (2013) Influence of Implant Number on The Biomechanical Behaviour of Mandibular Implant-Retained/Supported Overdentures: A Three-Dimensional Finite Element Analysis, Journal of Dentistry 41, 241-249.
  • [19] Deste, G. and Durkan, R., (2020) Effects of all-on-Four Implant Designs in Mandible on Implants and the Surrounding Bone: A 3-D Finite Element Analysis, Nigerian Journal of Clinical Practice 23(4), 456-463.
  • [20] Elias, DM., Valerio, CS., Oliveria, DD., Manzi, FR., Zenobio, EG and Seraidarian, PI., (2020) Evaluation of Different Heights of Prosthetic Crowns Supported by an Ultra-Short Implant Using Three-Dimensional Finite Element Analysis, Fundamental Research 33(1), 81-90.
  • [21] Hasan, I., Bourauel, C., Keilig, L., Reimann, S. nd Heinemann, F., (2011) The influence of implant number and abutment design on the biomechanical behaviour of bone for an implant-supported fixed prosthesis: a finite element study in the upper anterior region, Computer Methods in Biomechanics and Biomedical Engineering 14(12), 1113-1116.
  • [22] Batista, V.E.S., Verri, F.R., Almeida, D.A.F., Junior, J.F.S., Lemos, C.A.A. and Pellizzer, E.P., (2017) Finite element analysis of implant-supported prosthesis with pontic and cantilever in the posterior maxilla, Computer Methods in Biomechanics and Biomedical Engineering 20(6), 663-670.
  • [23] Junior, J.F.S., Verri, F.R., Almeida, D.A.F., Batista, V.E.S., Lemos, C.A.A. and Pellizzer, E.P., (2017) Finite element analysis on influence of implant surface treatments, connection and bone types, Materials Science and Engineering C 63, 292–300.
  • [24] ANSYS 16.0, (2016). Swanson Analysis Systems Inc., Houston PA, USA.
  • [25] Menicucci, G., Mossolav, A., Mozzati, M., Lornzetti, M. and Preti, G., (2002) Tooth-Implant Connection: Some Biomechanical Aspects Based on Finite Element Analysis, Clinical Oral Implants Research 13, 334-341.
  • [26] Solidworks 2018, (2018). Dassault Systèmes Solidworks Corporation. Waltham MA, USA.
  • [27] Sauk, J.J., O’Neal, R.B., and Someman, M.J., (1992) Biological Requirements for Material Integration, Journal of Oral Implants 18, 243-255.
  • [28] Callister, W.D. and Rethwisch, D.D., (2013) Materials Science and Engineering. Nobel Akademik Yayıncılık, 8. Baskı, ISBN: 978-605-133-418-9, 992p.
  • [29] Colling, E.W., (1984) The Physical Metallurgy of Titanium Alloys, Metals Park (OH), American Society for Metals. 65-72.