ANALYZING THE EFFECTS OF DIFFERENT TOOL PATHS ON FORM ERRORS IN THE MILLING OF FREEFORM SURFACES

Machining of free-form surfaces is an important place in terms of design and performance in transportation, electronics and aeronautical industry. Problems such as form error and surface roughness were frequently encountered in the manufacture of these surfaces. For the solution of the problems, reprocessing is done, which causes time and resource loss. To eliminate these losses, the parts must be produced in the desired quality at one time. In order to find out the causes of form errors and to remove the adverse effects, the distribution on the surface must be determined correctly. Form errors should be examined in a way to cover the point, region and the whole part. In this study, a surface created with B-Spline curve has been processed with different tool paths. Surfaces were scanned in 3D and form errors were determined. Point, regional and whole parts are examined and the tool path that creates minimum form error is determined.

___

  • [1] Lartigue, C., Thiebaut, F., & Maekawa, T. (2001). CNC tool path in terms of B-spline curves. Computer-Aided Design, 33(4), 307-319. doi: 10.1016/S0010-4485(00)00090-7
  • [2] Haldar, B.K. (2010). CNC tool path generation for free-form surface machining, MS Thesis, Jadavpur University India.
  • [3] Ding, S., Mannan, M. A., Poo, A. N., Yang, D. C. H., & Han, Z. (2003). Adaptive iso-planar tool path generation for machining of free-form surfaces. Computer-Aided Design, 35(2), 141-153. doi: 10.1016/S0010-4485(02)00048-9
  • [4] Yin, Z. (2004). Rough and finish tool-path generation for NC machining of freeform surfaces based on a multiresolution method. Computer-Aided Design, 36(12), 1231-1239. doi:10.1016/j.cad.2004.01.003
  • [5] Feng, H. Y., & Teng, Z. (2005). Iso-planar piecewise linear NC tool path generation from discrete measured data points. Computer-Aided Design, 37(1), 55-64. doi: 10.1016/j.cad.2004.04.001
  • [6] Choi, Y. K., Banerjee, A., & Lee, J. W. (2007). Tool path generation for free form surfaces using Bézier curves/surfaces. Computers & industrial engineering, 52(4), 486-501. doi: 10.1016/j.cie.2007.02.004
  • [7] Choi, Y. K., & Banerjee, A. (2007). Tool path generation and tolerance analysis for free-form surfaces. International Journal of machine Tools and manufacture, 47(3-4), 689-696. doi: 10.1016/j.ijmachtools.2006.04.014
  • [8] Zou, Q., Zhang, J., Deng, B., & Zhao, J. (2014). Iso-level tool path planning for free-form surfaces. Computer-Aided Design, 53, 117-125. doi: 10.1016/j.cad.2014.04.006
  • [9] Chen, T., & Shi, Z. (2008). A tool path generation strategy for three-axis ball-end milling of free-form surfaces. journal of materials processing technology, 208(1-3), 259-263. doi: 10.1016/j.jmatprotec.2007.12.142
  • [10] Kim, S. J., & Yang, M. Y. (2006). A CL surface deformation approach for constant scallop height tool path generation from triangular mesh. The International Journal of Advanced Manufacturing Technology, 28(3-4), 314. doi: 10.1007/s00170-004-2372-4
  • [11] Kim, B. H., & Choi, B. K. (2000). Guide surface based tool path generation in 3-axis milling: an extension of the guide plane method. Computer-Aided Design, 32(3), 191-199. doi: 10.1016/S0010-4485(99)00086-X
  • [12] Lazoglu, I., Manav, C., & Murtezaoglu, Y. (2009). Tool path optimization for free form surface machining. CIRP annals, 58(1), 101-104. doi: 10.1016/j.cirp.2009.03.054
  • [13] Wei, Z. C., Wang, M. J., Zhu, J. N., & Gu, L. Y. (2011). Cutting force prediction in ball end milling of sculptured surface with Z-level contouring tool path. International Journal of Machine Tools and Manufacture, 51(5), 428-432. doi: 10.1016/j.ijmachtools.2011.01.011
  • [14] Abbas, T.(2009), Automatic Tool Path Generation for Parametric Surfaces in Terms of Bezier Patches. Eng.&Tech. Journal, Vol.27, No.4.
  • [15] Chiou, C. J., & Lee, Y. S. (2002). A machining potential field approach to tool path generation for multi-axis sculptured surface machining. Computer-Aided Design, 34(5), 357-371. doi: 10.1016/S0010-4485(01)00102-6
  • [16] Kurt, M., Hartomacıoğlu, S., Mutlu, B., Köklü, K. (2012). Minimization of the surface roughness and form error on the milling of free-form surfaces using a grey relational analysis. Materials and technology, 46 (2012) 3, 205–213.
  • [17] Zębala, W., Matras, A., & Beno, J. (2011). Optimization of free-form surface milling.
  • [18] Vakondios, D., Kyratsis, P., Yaldiz, S., Antoniadis, A. (2012). Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy Al7075-T6. Measurement, Vol 45, Issue 6. doi: 10.1016/j.measurement.2012.03.001
  • [19] Zebala, W., Matras, A., Kowalczyk, R. (2012). Optimization of TCF-5 and TJF composite free form surface milling. Advances in Manufacturing Science Technology. Vol 36, No 3.
  • [20] Cao, J. Wang, G. (2008). The structure of uniform B-spline curves with parameters. Progress in Natural Science, 18(3), 303-308. doi: 10.1016/j.pnsc.2007.09.005
  • [21] Andersson, F., Kvernes, B. (2003). Bezier and B-spline Technology. Umea university Sweden.
  • [22] Anonymous. (2014). Computer Aided Design-Nurbs Surface. Universite De Liege. Belgium.
  • [23] Gök, A., Göloğlu, C., & Demirci, H. İ. (2014). Dışbükey ve İçbükey Yüzeylerin Küresel Parmak Frezelenmesinde Takım Sehimine Bağlı Form Hatalarının Belirlenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 29(2). doi: 10.17341/gummfd.59802
  • [24] Bonetti, I., Oliveira, V. V., & Souza, A. F. (2011). Evaluation of the cutting force and geometric error for roughing operation by plunge milling. In Advanced Materials Research (Vol. 223, pp. 350-358). Trans Tech Publications. doi: 10.4028/www.scientific.net/AMR.223.350