INVESTIGATION OF MECHANICAL AND METALLOGRAPHIC PROPERTIES OF TWO DIFFERENT ALUMINUM ALLOYS JOINED WITH FRICTION STIR WELDING METHOD USING DIFFERENT WELDING PARAMETERS

In this study two aluminum alloy materials of EN AW-5083-H111 and EN AW-6082-T651 were joined with Friction Stir Welding considering the parameters as the tool shoulder diameter, spindle speed and feed rate. The mechanical properties of the weld joints such as yield strength, tensile strength and micro-hardness and metallographic properties were investigated comparatively with the use of these welding parameters. The yield strength of the weld joints were determined to be between 136-217 MPa while the tensile strengths were between 159-230 MPa and the percent elongations were between 2.28-5.44 %. The hardness values measured in weld areas were higher in the EN AW-6082 base metal side compared with EN AW-5083 base metal side.

___

  • [1] Kulekci, M., K., Şik A., Kaluç, E. (2008). Effects of tool rotation and pin diameter on fatigue properties of friction stir welded lap joints, International Journal of Advanced Manufacturing Technology, Vol. 36, 877-882, doi: 10.1007/s00170-006-0901-z.
  • [2] Oates, W.R. (Ed.). (1998). Welding Handbook-Materials and Applications, AWS, 8th Edition.
  • [3] What is Welding?-Definition, processes and types of joints, from https://www.twi-global.com/technical-knowledge/faqs/what-is- welding, accessed September 15, 2019.
  • [4] Kaynak Tekniği El Kitabı-Yöntemler Ve Donanımlar, Anık, S. (1991), from http://www.gedikegitimvakfi.org.tr/wp- content/uploads/2013/12/library_6.pdf, accessed September 15, 2019.
  • [5] Hou, K., Baeslack, W. (1996). Characterization of the heat-affected zone in gas tungsten arc welded aluminium alloy 2195-T8, Journal of Materials Science Letters, Vol. 15, No. 3, 239–244, doi:10.1007/BF00274462.
  • [6] Koteswara Rao, S.R., Madhusudhan Reddy, G., Srinivasa Rao, K., Kamaraj, M., Prasad Rao, K. (2005). Reasons for superior mechanical and corrosion properties of 2219 aluminum alloy electron beam welds, Materials Characterization, Vol. 55, No. 4-5, 345–354, doi: 10.1016/j.matchar.2005.07.006.
  • [7] Paston, M., Zhao, H., Martukannitz, R.P., Debroy, T. (1999). Porosity, underfill and magnesium loss during continuous wave Nd: YAG laser welding of thin plates of aluminium alloy 5182 and 5754, Materials Science, 207–216.
  • [8] Yeniyil, E., Boga, C., Esme, U. (2019). Effects of ultrasonic welding parameters for solar collector applications, Materials Testing, Vol. 61, No. 4, 344-348, https://doi.org/10.3139/120.111326.
  • [9] Klobcar, D., Kosec, L., Pietras, A., Smolej, A. (2012). Friction-stir welding of aluminium alloy 5083, Materials and Technology, Vol. 46, No. 5, 483–488.
  • [10] Industrial Applications, from https://www.twi-global.com/what-we-do/research-and-technology/technologies/welding-joining-and-cutting/friction-welding/friction-stir-welding/industrial-applications, accessed September 22, 2019.
  • [11] New joining technologies for future fuselage metal structures, from https://www.iws.fraunhofer.de/content/dam/iws/en/documents/publications/annual_report_articles/JB_IWS_2014_en_S30-31.pdf, accessed September 22, 2019.
  • [12] Besharati-Givi, M.K., Asadi, P. (2014). Advances in Friction-Stir Welding and Processing, Woodhead Publishing.
  • [13] James, M.N., Hattingh, D.G., Bradley, G.R. (2003). Weld tool travel speed effects on fatigue life of friction stir welds in 5083 aluminium, International Journal of Fatigue, Vol. 25, 1389-1398, doi: 10.1016/S0142-1123(03)00061-6.
  • [14] Kumar, R., Singh, K., Pandey S. (2012). Process forces and heat input as function of process parameters in AA5083 friction stir welds, Trans. Nonferrous Met. Soc. China, Vol. 22, 288-298, doi: 10.1016/S1003-6326(11)61173-4.
  • [15] Cavaliere, P., Squillace, A., Panella, F. (2008). Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding, Journal of Materials Processing Technology, Vol. 200(1-3), 364–372, doi: 10.1016/j.jmatprotec.2007.09.050.
  • [16] Mroczka, K., Pietras, A. (2009). FSW characterization of 6082 aluminium alloys sheets, Archives of Materials Science and Engineering, Vol. 40, 104-109.
  • [17] Costa, J.D., Ferreira, J.A.M., Borrego, L.P., Abreu, L.P. (2012). Fatigue behaviour of AA6082 friction stir welds under variable loadings, International Journal of Fatigue, Vol. 37, 8-16, doi: 10.1016/j.ijfatigue.2011.10.001.
  • [18] El-Danaf E.A., El-Rayes M.M. (2013). Microstructure and mechanical properties of friction stir welded 6082 AA in as welded and post weld heat treated conditions, Materials and Design, Vol. 46, 561-572, doi: 10.1016/j.matdes.2012.10.047.
  • [19] El-Rayes, M.M., El-Rayes, M.M. (2012). The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082, Journal of Materials Processing Technology, Vol. 212, 1157-1168, doi: 10.1016/j.jmatprotec.2011.12.017.
  • [20] Cabibbo, M., Forcellese, A., El Mehtedi, M., Simoncini M. (2014). Double side friction stir welding of AA6082 sheets: microstructure and nanoindentation characterization, Materials Science & Engineering A., Vol. 590, 209-217, doi:10.1016/j.msea.2013.10.031.
  • [21] Krasnowski, K., Hamilton, C., Dymek, S. (2015). Influence of the tool shape and weld configuration on microstructure and mechanical properties of the Al 602 alloy FSW joints, Archives of Civil and Mechanical Engineering, Vol. 15, 133-141, https://doi.org/10.1016/j.acme.2014.02.001.
  • [22] Cho, J.H., Kim, W.J., Lee C.G. (2014). Evolution of microstructure and mechanical properties during friction stir welding of A5083 and A6082, Procedia Engineering, Vol. 81, 2080-2085, https://doi.org/10.1016/j.proeng.2014.10.289.
  • [23] Singha J., Shankar, L. (2015). Analysis of process parameters effect on friction stir welding of aluminium 5083 and 6082, Iracst- International Journal of Research in Management & Technology, Vol. 5, 2249-9563.
  • [24] Gungor, B., Kaluc, E., Taban, E., Sik, A. (2014). Mechanical, fatigue and microstructural properties of friction stir welded 5083-H111 and 6082-T651 aluminum alloys, Materials and Design, Vol. 56, 84-90, https://doi.org/10.1016/j.matdes.2013.10.090.
  • [25] Zucchi, F., Trabanelli, G., Grassi, V. (2001). Pitting and stress corrosion cracking resistance of friction stir welded AA5083, Materials and Corrosion, Vol. 52, 853-859, https://doi.org/10.1002/1521-4176(200111)52:11<853::AID-MACO853>3.0.CO;2-1.
  • [26] Vilaca, P., Pepe, N., Quintino, L. (2006). Metallurgical and corrosion features of friction stir welding of AA5083-H111, Welding in the World, Vol. 50, No. 9-10, 55-64.
  • [27] Park, S., Kim, J., Han, M., Kim, S. (2009). Corrosion and optimum corrosion protection potential of friction stir welded 5083-O Al alloy for leisure ship, Trans. Nonferrous Met. Soc. China, Vol. 19, No. 4, 898-903, https://doi.org/10.1016/S1003-6326 (08)60373-8.
  • [28] Shen, C., Zhang, J., Ge, J. (2011). Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld, Journal of Environmental Sciences, Vol. 23, 32-35, https://doi.org/10.1016/S1001-0742(11)61072-3.
  • [29] Patil, H.S., Soman, S.N. (2014). Corrosion behaviour of friction stir welded aluminium alloys AA6082-T6, American Journal of Materials Engineering and Technology, Vol. 2, 29-33, doi:10.12691/materials-2-3-1.
  • [30] Donatus, U., Thompson, G.E., Zhou, X., Wang, J., Cassell, A., Beamish, K. (2015). Corrosion susceptibility of dissimilar friction stir welds of AA5083 and AA6082 alloys, Materials Characterization, Vol. 107, 85-97, doi: 10.1016/j.matchar.2015.07.002.
  • [31] Referans Metal, from http://referansmetal.com/alasimli-aluminyum/list/4/genel-endustri, accessed September 30, 2019.
  • [32] Empo Alüminyum, from http://www.empo.com.tr/aluminyum-lama-ve-cubuk/en-aw-6082.html, accessed September 30, 2019.
  • [33] E. Taban, E., Kaluç, E. (2004). Alüminyum ve Alüminyum Alaşımlarının Sürtünen Eleman ile Birleştirme Kaynağında (FSW) Kaynak Bölgesinin Mikroyapısal Özelikleri, Metal Dünyası , Vol. 136, 131-140.
  • [34] Fouladi, S., Ghasemi, A H., Abbasi, M., Abedini, M., Khorasani, A.M., Gibson, I. (2017). The effect of vibration during friction stir welding on corrosion behavior, mechanical properties, and machining characteristics of stir zone, Metals, Vol. 7, No.10, 1-14, https://doi.org/10.3390/met7100421.
  • [35] Naderi, M., Abbasi, M., Saeed-Akbari, A. (2013). Enhanced mechanical properties of a hot-stamped advanced high-strength steel via tempering treatment, Metall. Mater. Trans. A, Vol. 44, 1852–1861, doi: 10.1007/s11661-012-1546-1.
  • [36] Ma, Z., Pilchak, A., Juhas, M., Williams, J. (2008). Microstructural refinement and property enhancement of cast light alloys via friction stir processing, Scr. Mater., Vol. 58, 361–366, doi: https://doi.org/10.1016/j.scriptamat.2007.09.062.