COMPARISON OF TWO TYPES OF BINDERS NATURALS ON THE MECHANICAL AND THERMAL PROPERTIES OF TYPHA LEAF POWDER PANELS

This paper is a contribution to the valorization of Typha Australis as building material. The aim of this article is to develop 100% vegetal insulation boards based on powder of typha leaves and gum arabic and starch binders. The comparison of the nature of the binder on the mechanical and thermal properties was carried out. The influence of binder content on the mechanical and thermal insulation properties of panels of typha-gum Arabic and typha-starch was examined too. The density is very small in the case of starch than in the case of gum arabic. The typha-gum arabic panel is 1.17 times more dense than that of typha-starch, for 33.33 % binder. The typha-starch board, for 50 % binder, showed a good compressive strength (1.05 MPa) and is 1.36 times stronger than the typha-gum arabic board. The best thermal conductivity is obtained with the typha-starch board (0.051 W.m-1.K-1) for 33.33 % binder. The thermal conductivity values are close to or lower than many of natural insulating materials. It was also concluded that the typha - gum arabic panels are more effusive.

___

  • [1] Systemes d’Information Energetique du Senegal (2010), 60p.
  • [2] Deuxième communication nationale à la Convention Cadre des Nations Unies sur les Changements Climatiques, 2010, 177p.
  • [3] Cabeza L.F., Castell A., Medrano M., Martorell I. (2010) Experimental study on the performance of insulation materials in Mediterranean construction, Energy and Buildings 42, 630–636.
  • [4] Toguyeni D., Coulibaly O., Ouedrago A., Koulidiati J., Dutil Y., Rousse D. R., (2012) Etude de l’influence de matériaux locaux isolants de toiture sur les charges de climatisation d’une maison individuelle en argile – paille, CIFEM – ART-13-93, 4p.
  • [5] Soubdhan T., Feuillard T., Bade F. (2005) Experimental evaluation of insulation material in roofing system under tropical climate, Solar Energy 79, 311–320.
  • [6] Nguong C.W., Lee S.N.B., Sujan D. (2013) A Review on Natural Fibre Reinforced Polymer Composites, International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering 7, 33–40.
  • [7] Canbolat Ş., Kut D., Dayioglu H., Merdan N. (2013) Investigation of the effects of pumice stone powder and polyacrylic ester based material on thermal insulation of polypropylene fabrics, TEKSTİL ve KONFEKSİYON 23, 349–355.
  • [8] Cerezo V., (2005) Propriétés mécaniques, thermiques et acoustiques d'un matériau à base de particules végétales: approche expérimentale et modélisation théorique, These de l’Ecole Nationale des Travaux Publics de l'Etat.
  • [9] Benitha S. U.V., (2014) Elaboration et caractérisation d’un agromatériau chanvre-amidon pour le Bâtiment. PhD Thesis REIMS University
  • [10] Cuk N., Kunaver M., Medved S. (2011) Properties of Particuleboards Made by using an adhesive with added liquefied wood, Materials and technology 45, 241–245.
  • [11] Zach J., Brožovský J., Hroudová J. (2010) Reserch and development of thermal-insulating materials based on natural fibres, 10th International conference, Modern building materials, structures and techniques, 330 – 334.
  • [12] Ponnukrishnan P., Chithambara T.M., Richard S., (2014) Mechanical characterization ot typha domingensis natural fiber reinforced polyester composites, American International Journal of Research in Science. Technology, Engeneering and Mathematics 3, 241–244
  • [13] Diatta M., Gaye S., Thiam A., Azilinon D., (2011) Détermination des propriétés thermophysique et mécanique du typha australis. Cong. SFT. Perpignan, France.
  • [14] Abdelhakh A. O., (2016) Amélioration de l’efficacité énergétique des bâtiments par l’utilisation d’un béton léger à base de Typha Australis, Thèse de l’Université de Thiès.
  • [15] Niang I, Maalouf C, Moussa T, et al. (2018) Hygrothermal performance of various Typha–clay composite. Journal of Building Physics, 1–20.
  • [16] Diagne M., Tonoli G.H.D., Joaquim A.P., Savastana Jr. H., Beye A.C., Soboyejo W., (2005) Synthetic and vegetable plant fibres as hybrid reinforcement for cement based matrix, Inter American Conference on Non-Conventional Materials and Technologies in Ecological and Sustainable Construction. 617-624.
  • [17] Jannot Y., Felix V., Degiovanni A. (2012) A centered hot plate method for measurement of thermal properties of thin insulating materials, Measurement Science and Technology 21, 1–8.
  • [18] Bal H., Jannot Y., Quenette N., Chenu A., (2012) Water content dependence of the porosity, density and thermal capacity of laterite based bricks with millet waste additive, Construction and Building Materials 31, 144–150.
  • [19] Mailllet D., Andre S., Batsale J.C., (2000) Thermal Quadrupoles: Solving the heat equation through integral transforms, Wiley, New York.
  • [20] Zach J., Brožovský J., Hroudová J. (2010) Research and development of thermal-insulating materials, The 10th Inter. Conf. Mod. Build. Mater. Struc. Tech, 330–334.
  • [21] Cigasova J., Stevulova N., Sicakova A., Junak J., (2013) some aspects of lightweight composites durability, Chemical Engineering Transactions 32, 1615–1620
  • [22] Chikhi M., Agoudjil B., Boudenne A., Gherabli A., (2013) Experimental investigation of new biocomposite with low cost for thermal insulation, Energy and Building 66, 267–273.
  • [23] Collet F., (2004) Caractérisations hydrique et thermique de matériaux de génie civil à faibles impacts environnementaux. Thèse de doctorat. Institut National des Sciences Appliquées de Rennes.
  • [24] Evrard A., (2008) Transient hydrothermal behaviour of Lime-Hemp Materials. Thèse de doctorat. Ecole polytechnique de Louvain, Belgique.
  • [25] Hamzé K., Chadi M., Christophe B., Alexandre G., Mohammed L., Guillaume P., (2019) Mechanical and thermal characterization of a beet pulp-starch composite for building applications, E3S Web of Conferences 85, 8p.