ENERGY CONSUMPTION AND EFFICIENCY IMPROVEMENT OF ELECTRO-ACTIVATED PERSULFATE PROCESSES: OPTIMIZATION BY CCD FOR TOC REMOVAL FROM LEACHATE CONCENTRATE

This study aimed to investigate the application of electro-activated persulfate processes to provide maximum total organic carbon (TOC) removal from the leachate nanofiltration concentrate with minimum energy consumption. Electro-activated persulfate processes were evaluated in terms of operating parameters of oxidant/chemical oxygen demand (COD) ratio, applied current, pH, and reaction time. Response surface methodology and central composite design were applied for statistical analysis and optimization of process parameters. Estimated TOC removal efficiencies by the model under optimum conditions were 58.65% and 61.07% for electro-peroxymonosulfate (EPM) and electro-peroxydisulfate (EPD) processes, respectively; while energy consumption was 1.87 and 5.81 kWh/m3, respectively. TOC removal efficiencies in experimental studies performed to verify model conformity were 56.91% and 58.43% for EPM and EPD processes, respectively. The conformity of the estimated and actual removal efficiencies shows that the central composite design is a suitable tool in determining the optimum conditions to achieve maximum TOC removal with minimum cost. Since the TOC removal efficiencies obtained by EPM and EPD processes were very close to each other, the EPM process with lower energy consumption is more advantageous. Based on the experimental results, a mathematical model was developed, and the nickel inhibition constants (KNi) were found to be 8.75 mg/L.

___

  • ⦁ Ahmadi, M., Ghanbari, F., 2016. Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption. Environ. Sci. Pollut. Res. 23, 19350–19361. https://doi.org/10.1007/s11356-016-7139-6
  • ⦁ Ahmadi, M., Ghanbari, F., Moradi, M., 2015. Photocatalysis assisted by peroxymonosulfate and persulfate for benzotriazole degradation: Effect of ph on sulfate and hydroxyl radicals. Water Sci. Technol. 72, 2095–2102. https://doi.org/10.2166/wst.2015.437
  • ⦁ Ahmed, F.N., Lan, C.Q., 2012. Treatment of landfill leachate using membrane bioreactors: A review. Desalination 287, 41–54. https://doi.org/10.1016/j.desal.2011.12.012
  • ⦁ Akbari, S., Ghanbari, F., Moradi, M., 2016. Bisphenol A degradation in aqueous solutions by electrogenerated ferrous ion activated ozone, hydrogen peroxide and persulfate: Applying low current density for oxidation mechanism. Chem. Eng. J. 294, 298–307. https://doi.org/10.1016/j.cej.2016.02.106
  • ⦁ Antony, J., Niveditha, S. V., Gandhimathi, R., Ramesh, S.T., Nidheesh, P. V., 2020. Stabilized landfill leachate treatment by zero valent aluminium-acid system combined with hydrogen peroxide and persulfate based advanced oxidation process. Waste Manag. 106, 1–11. https://doi.org/10.1016/j.wasman.2020.03.005
  • ⦁ APHA, 2005. Standard Methods for Examination of Water and Wastewater, 21th ed, American Public Health Association. American Public Health Association. https://doi.org/ISBN 9780875532356
  • ⦁ Arslan-Alaton, I., Olmez-Hanci, T., Khoei, S., Fakhri, H., 2017. Oxidative degradation of Triton X-45 using zero valent aluminum in the presence of hydrogen peroxide, persulfate and peroxymonosulfate. Catal. Today 280, 199–207. https://doi.org/10.1016/j.cattod.2016.04.039
  • ⦁ Babuponnusami, A., Muthukumar, K., 2014. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. https://doi.org/10.1016/j.jece.2013.10.011
  • ⦁ Baiju, A., Gandhimathi, R., Ramesh, S.T., Nidheesh, P. V., 2018. Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate. J. Environ. Manage. 210, 328–337. https://doi.org/10.1016/j.jenvman.2018.01.019
  • ⦁ Cao, Z., Wen, D., Chen, H., Wang, J., 2016. Simultaneous removal of COD and ammonia nitrogen using a novel electro-oxidation reactor: a technical and economic feasibility study. Int. J. Electrochem. Sci. 11, 4018–4026.
  • ⦁ Chemlal, R., Azzouz, L., Kernani, R., Abdi, N., Lounici, H., Grib, H., Mameri, N., Drouiche, N., 2014. Combination of advanced oxidation and biological processes for the landfill leachate treatment. Ecol. Eng. 73, 281–289. https://doi.org/10.1016/j.ecoleng.2014.09.043
  • ⦁ Clarke, B.O., Anumol, T., Barlaz, M., Snyder, S.A., 2015. Investigating landfill leachate as a source of trace organic pollutants. Chemosphere 127, 269–275. https://doi.org/10.1016/j.chemosphere.2015.02.030
  • ⦁ Cui, Y.-H., Chen, Q., Feng, J.-Y., Liu, Z.-Q., 2014. Effectiveness of electrochemical degradation of sulfamethazine on a nanocomposite SnO 2 electrode. RSC Adv. 4, 30471–30479.
  • ⦁ Cui, Y., Li, X., Chen, G., 2009. Electrochemical degradation of bisphenol A on different anodes. Water Res. 43, 1968–1976.
  • ⦁ Cui, Y.H., Xue, W.J., Yang, S.Q., Tu, J.L., Guo, X.L., Liu, Z.Q., 2018. Electrochemical/peroxydisulfate/Fe3+ treatment of landfill leachate nanofiltration concentrate after ultrafiltration. Chem. Eng. J. 353, 208–217. https://doi.org/10.1016/j.cej.2018.07.101
  • ⦁ Cui, Y.H., Xue, W.J., Yang, S.Q., Tu, J.L., Guo, X.L., Liu, Z.Q. 2018. Electrochemical/peroxydisulfate/Fe3+ treatment of landfill leachate nanofiltration concentrate after ultrafiltration, Chem. Eng. J. 353, 208–217.
  • ⦁ Dindas, G.B., Caliskan, Y., Celebi, E.E., Tekbas, M., Bektas, N., Yatmaz, H.C., 2018. Sequential Treatment of Food Industry Wastewater by Electro-Fenton and Electrocoagulation Processes. Int. J. Electrochem. Sci 13, 12349–12359.
  • ⦁ Ding, J., Gao, Q., Wang, Y., Zhao, G., Wang, K., Jiang, J., Li, J., Zhao, Q., 2020. Simulation and prediction of electrooxidation removal of ammonia and its application in industrial wastewater effluent. Water Environ. Res.
  • ⦁ El Kateb, M., Trellu, C., Darwich, A., Rivallin, M., Bechelany, M., Nagarajan, S., Lacour, S., Bellakhal, N., Lesage, G., Héran, M., Cretin, M., 2019. Electrochemical advanced oxidation processes using novel electrode materials for mineralization and biodegradability enhancement of nanofiltration concentrate of landfill leachates. Water Res. 162, 446–455. https://doi.org/10.1016/j.watres.2019.07.005
  • ⦁ Fernandes, A., Labiadh, L., Ciríaco, L., Pacheco, M.J., Gadri, A., Ammar, S., Lopes, A., 2017. Electro-Fenton oxidation of reverse osmosis concentrate from sanitary landfill leachate: Evaluation of operational parameters. Chemosphere 184, 1223–1229. https://doi.org/10.1016/j.chemosphere.2017.06.088
  • ⦁ Furman, O.S., Teel, A.L., Watts, R.J., 2010. Mechanism of base activation of persulfate. Environ. Sci. Technol. 44, 6423–6428.
  • ⦁ Ghauch, A., Tuqan, A.M., 2012. Oxidation of bisoprolol in heated persulfate/H2O systems: kinetics and products. Chem. Eng. J. 183, 162–171.
  • ⦁ Görmez, F., Görmez, Ö.,Yabalak, E. Gözmen, B., 2020. Application of the central composite design to mineralization of olive mill wastewater by the electro/FeII/persulfate oxidation method. SN Applied Sciences, 2:178.
  • ⦁ Guan, Y.-H., Ma, J., Liu, D.-K., Ou, Z., Zhang, W., Gong, X.-L., Fu, Q., Crittenden, J.C., 2018. Insight into chloride effect on the UV/peroxymonosulfate process. Chem. Eng. J. 352, 477–489.
  • ⦁ Guo, Y., Zhou, J., Lou, X., Liu, R., Xiao, D., Fang, C., Wang, Z., Liu, J., 2014. Enhanced degradation of Tetrabromobisphenol A in water by a UV/base/persulfate system: Kinetics and intermediates. Chem. Eng. J. 254, 538–544.
  • ⦁ Han, S., Hassan, S.U., Zhu, Y., Zhang, Shuai, Liu, H., Zhang, Sen, Li, J., Wang, Z., Zhao, C., 2019. Significance of Activated Carbon Fiber as Cathode in Electro/Fe3+/Peroxydisulfate Oxidation Process for Removing Carbamazepine in Aqueous Environment. Ind. Eng. Chem. Res. 58, 19709–19718.
  • ⦁ He, R., Wei, X.M., Tian, B.H., Su, Y., Lu, Y.L., 2015. Characterization of a joint recirculation of concentrated leachate and leachate to landfills with a microaerobic bioreactor for leachate treatment. Waste Manag. 46, 380–388. https://doi.org/10.1016/j.wasman.2015.08.006
  • ⦁ Hou, L., Zhang, H., Xue, X., 2012. Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water, in: Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2011.06.023
  • ⦁ Kim, C., Ahn, J.-Y., Kim, T.Y., Hwang, I., 2020. Mechanisms of electro-assisted persulfate/nano-Fe0 oxidation process: Roles of redox mediation by dissolved Fe. J. Hazard. Mater. 388, 121739.
  • ⦁ Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., Christensen, T.H., 2002. Present and long-term composition of MSW landfill leachate: A review. Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643380290813462
  • ⦁ Lee, Y.-C., Lo, S.-L., Kuo, J., Lin, Y.-L., 2012. Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20--40 C. Chem. Eng. J. 198, 27–32.
  • ⦁ Li, J., Zhao, L., Qin, L., Tian, X., Wang, A., Zhou, Y., Meng, L., Chen, Y., 2016. Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo - Fenton processes. Chemosphere. https://doi.org/10.1016/j.chemosphere.2015.12.069
  • ⦁ Li, X., Zhu, W., Wu, Y., Wang, C., Zheng, J., Xu, K., Li, J., 2015. Recovery of potassium from landfill leachate concentrates using a combination of cation-exchange membrane electrolysis and magnesium potassium phosphate crystallization. Sep. Purif. Technol. 144, 1–7. https://doi.org/10.1016/j.seppur.2015.01.035
  • ⦁ Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere. https://doi.org/10.1016/j.chemosphere.2004.01.029
  • ⦁ Liang, C., Wang, Z.-S., Bruell, C.J., 2007. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66, 106–113.
  • ⦁ Liu, J., Zhong, S., Song, Y., Wang, B., Zhang, F., 2018. Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation. J. Electroanal. Chem. 809, 74–79.
  • ⦁ Liu, X., Zhang, T., Zhou, Y., Fang, L., Shao, Y., 2013. Degradation of atenolol by UV/peroxymonosulfate: kinetics, effect of operational parameters and mechanism. Chemosphere 93, 2717–2724.
  • ⦁ Liu, Y., Wang, Y., Wang, Q., Pan, J., Zhang, J., 2018. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS). Chemosphere 190, 431–441.
  • ⦁ Long, Y., Xu, J., Shen, D., Du, Y., Feng, H., 2017. Effective removal of contaminants in landfill leachate membrane concentrates by coagulation. Chemosphere 167, 512–519. https://doi.org/10.1016/j.chemosphere.2016.10.016
  • ⦁ Lv, X.-D., Cui, Y.-H., Xue, W.-J., Yang, S.-Q., Li, J.-Y., Liu, Z.-Q., 2019a. Comparison of inert and non-inert cathode in cathode/Fe3+/Peroxymonosulfate processes on iohexol degradation. Chemosphere 223, 494–503.
  • ⦁ Lv, X.-D., Yang, S.-Q., Xue, W.-J., Cui, Y.-H., Liu, Z.-Q., 2019b. Performance of Cu-cathode/Fe3+/peroxymonosulfate process on iohexol degradation. J. Hazard. Mater. 366, 250–258.
  • ⦁ Mandal, P., Dubey, B.K., Gupta, A.K., 2017. Review on landfill leachate treatment by electrochemical oxidation: drawbacks, challenges and future scope. Waste Manag. 69, 250–273.
  • ⦁ Mohajeri, S., Abdul Aziz, H., Isa, M.H., Zahed, M.A., 2018. Treatment of landfill leachate by electrochemicals using aluminum electrodes. J. Appl. Res. Water Wastewater 5, 435–440.
  • ⦁ Mohebrad, B., Rezaee, A., Dehghani, S., 2018. Anionic Surfactant Removal Using Electrochemical Process: Effect of Electrode Materials and Energy Consumption. Iran. J. Heal. Saf. Environ. 5, 939–946.
  • ⦁ Morello, L., Cossu, R., Raga, R., Pivato, A., Lavagnolo, M.C., 2016. Recirculation of reverse osmosis concentrate in lab-scale anaerobic and aerobic landfill simulation reactors. Waste Manag. 56, 262–270. https://doi.org/10.1016/j.wasman.2016.07.030
  • ⦁ Primo, O., Rivero, M.J., Ortiz, I., 2008. Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. J. Hazard. Mater. 153, 834–842. https://doi.org/10.1016/j.jhazmat.2007.09.053
  • ⦁ Qi, C. , Liu, X., Lin, C., Zhang, H., Li, X., Ma, J., 2017. Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants. Chem. Eng. J. 315, 201–209. ⦁ Qi, G., Yue, D., Nie, Y., 2012. Characterization of humic substances in bio-treated municipal solid waste landfill leachate. Front. Environ. Sci. Eng. China 6, 711–716. https://doi.org/10.1007/s11783-012-0421-z
  • ⦁ Silveira, J.E., Zazo, J.A., Pliego, G., Bidóia, E.D., Moraes, P.B., 2015. Electrochemical oxidation of landfill leachate in a flow reactor: optimization using response surface methodology. Environ. Sci. Pollut. Res. 22, 5831–5841.
  • ⦁ Takdastan, A., Kakavandi, B., Azizi, M., Golshan, M., 2018. Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: a new approach into catalytic degradation of bisphenol A. Chem. Eng. J. 331, 729–743.
  • ⦁ Talalaj, I.A., Biedka, P., 2015. Impact of concentrated leachate recirculation on effectiveness of leachate treatment by reverse osmosis. Ecol. Eng. 85, 185–192. https://doi.org/10.1016/j.ecoleng.2015.10.002
  • ⦁ Tan, C., Gao, N., Deng, Y., Rong, W., Zhou, S., Lu, N., 2013. Degradation of antipyrine by heat activated persulfate. Sep. Purif. Technol. 109, 122–128. https://doi.org/10.1016/j.seppur.2013.03.003
  • ⦁ Wang, H., Wang, Y. nan, Li, X., Sun, Y., Wu, H., Chen, D., 2016. Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment. Waste Manag. 56, 271–279. https://doi.org/10.1016/j.wasman.2016.07.040
  • ⦁ Xiao, K., Chen, Y., Jiang, X., Seow, W.Y., He, C., Yin, Y., Zhou, Y., 2017. Comparison of different treatment methods for protein solubilisation from waste activated sludge. Water Res. 122, 492–502. https://doi.org/10.1016/j.watres.2017.06.024
  • ⦁ Xie, B., Lv, Z., Lv, B.Y., Gu, Y.X., 2010. Treatment of mature landfill leachate by biofilters and Fenton oxidation. Waste Manag. 30, 2108–2112. https://doi.org/10.1016/j.wasman.2010.06.018
  • ⦁ Xingxing, Q., Chaojie, Z., Ying, Z., 2015. Treatment of Landfill Leachate RO Concentrate by VMD. https://doi.org/10.2991/cas-15.2015.4
  • ⦁ Xue, W., Cui, Y., Liu, Z., Yang, S., Li, J., Guo, X., 2020. Treatment of landfill leachate nanofiltration concentrate after ultrafiltration by electrochemically assisted heat activation of peroxydisulfate. Sep. Purif. Technol. 231, 115928. https://doi.org/10.1016/j.seppur.2019.115928
  • ⦁ Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., Niu, R., 2010. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater. 179, 552–558.
  • ⦁ Zhang, H., Ran, X., Wu, X., Zhang, D., 2011. Evaluation of electro-oxidation of biologically treated landfill leachate using response surface methodology. J. Hazard. Mater. 188, 261–268.
  • ⦁ Zhang, L., Lavagnolo, M.C., Bai, H., Pivato, A., Raga, R., Yue, D., 2019. Environmental and economic assessment of leachate concentrate treatment technologies using analytic hierarchy process. Resour. Conserv. Recycl. 141, 474–480. https://doi.org/10.1016/j.resconrec.2018.11.007
  • ⦁ Zhang, M., Chen, X., Zhou, H., Murugananthan, M., Zhang, Y., 2015. Degradation of p-nitrophenol by heat and metal ions co-activated persulfate. Chem. Eng. J. 264, 39–47.
  • ⦁ Zhang, Q.Q., Tian, B.H., Zhang, X., Ghulam, A., Fang, C.R., He, R., 2013. Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Manag. 33, 2277–2286. https://doi.org/10.1016/j.wasman.2013.07.021
  • ⦁ Zhou, H., Lai, L., Wan, Y., He, Y., Yao, G., Lai, B., 2020. Molybdenum disulfide (MoS2): A versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine. Chem. Eng. J. 384, 123264.
  • ⦁ Zhou, P., Zhang, J., Zhang, Y., Zhang, G., Li, W., Wei, C., Liang, J., Liu, Y., Shu, S., 2018. Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper. J. Hazard. Mater. 344, 1209–1219. https://doi.org/10.1016/j.jhazmat.2017.11.023