Serbest ortamda lazer ile optiksel iletişim sistemleri için bilgisayar simülasyonu

Çok yüksek band genişliği, düşük güç tüketimi, hızlı kurulum, ağırlık ve boyut gibi önemli avantajlar sağlayan Serbest Ortamda Optiksel İletişim (SOOİ) sistemleri, pratik ve etkin bir kablosuz iletişim türüdür. Bununla birlikte sisli ve puslu hava gibi hava koşulları sistemin performansını olumsuz etkiler. Bu çalışmada 1 km'den kısa yatay linkler için bir SOOİ sisteminin performansını değerlendirmek üzere yarıiletken lazer, fotodedektör ve iletişim kanalını içeren bir bilgisayar simülasyon modeli geliştirildi.

Computer simulation for free space laser optical communication systems

Free-Space Optical Communication (FSOC) systems are practical and effective wireless communication tools, because of their unique advantages: extremely high bandwidth, rapid deployment, low power consumption, weight, and size. However, adverse weather conditions, such as fog and haze degrade the system performance. In this study, a computer simulation model has been developed including semiconductor laser, photodetector and communication channel to evaluate the performance of a FSOC system for the horizontal paths shorter than 1 km.

___

  • Bhattacharya, P., 1997, Semiconductor Optoelectronic Devices, Prentice-Hall, Inc., New Jersey, 613 sayfa.
  • Conradi, J., 1972, The Distribution of gain in uniformly multiplying avalanche photodiodes: Experimental, IEEE T. Electron Dev., 19, 713-718.
  • Davidson, F. M., Bayoumi, M., 1987, Theoretical performance of direct detection optical communication with AlGaAs laser transmitters, avalanche photodiode detecors, and color-soded PPM signalling, Journal of Lightwave Tech., 5,11,1574-1583.
  • Dodds, D. E., Sieben, M. J., 1995, Fabri-perot laser diode modelling, IEEE Photonic. Tech. L., 7, 3, 254-256.
  • Gagliardi, S. M., Karp, S., 1995, Optical Communications, Wiley-Interscience, New York , 2nd Edition, 368 sayfa.
  • Hansen, K., Schlachetzki, A., 1991, Transferred-electron device as a large-signal laser driver, IEEE J. Quantum Elect., 27, 423-427.
  • Javro, S.A., Kang, S. M., 1995, Transforming Tucker's linearized laser rate equations to a form has a single solution regime, J. Lightwave Technol., 13, 1899-1904.
  • Katzman, M., 1987, Laser Satellite Communication, Prentice-Hall, Inc., New Jersey, 241s.
  • Kim, I.I., Stieger, R., Koontz, J.A., Moursund, C, Barclay, C, Adhikari, P., Schuster, J., Korevaar, E., Ruigrok, R., DeCusatis, C, 1998, Wireless optical transmission of fast ethernet FDDI, ATM, and ESCON protocol data using the terralink laser communication system, Opt. Eng., 37, 12,3143-3155.
  • Kim, I.I., Korevaar, E., 2001, Availability of Free-Space Optics (FSO) and Hybrid FSO/RF Systems; Proc, SPIE Optical Wireless Communications IV. Vol. 4530, 84-95.
  • Kim, I.I., McArthur, B. Korevaar, E., 2001, Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications, Proc, SPIE Optical Wireless Communications III, Vol. 4214, 26-37.
  • Lambert, S.G., Casey, W.L., 1995, Laser Communications in Space, Artech House, Boston, London, 390 sayfa.
  • Manor, H., Arnon, S., 2003, Performance of an optical wireless communicaiton system as a function of wavelength, Appl. Optics, 42, 21, 4285-4296.
  • Srinivasan, M., Madden-Woods, B., Hamkins, J., Biswas, A., 2001, Laboratory characterization of silicon avalanche photodiodes (APD) for pulse position modulation (PPM) dedection, Proc., SPIE Free-Space Laser Communication Technologies XIII. Vol. 4272,133-141.
  • Tucker, R.S., Pope, D.J., 1983, Large signal circuit model for simulation of injection-laser modulation dynamics; IEEE J. Quantum Elect., 19, 1179-1183.