C-H Grupları ile Bor Atomlarının Yer Değiştirmesi Sonucunda B6-nCnHn (n=0-6) Serilerinin Yapısal ve Elektronik Özellikleri: Bir Yoğunluk Fonksiyonel Teori Çalışması

Bu çalışmada B6-nCnHn (n=0-6) serilerinin yapısal ve enerji özellikleri yoğunluk fonksiyonel teorisi kullanılarak araştırıldı. Adyabatik iyonizasyon potansiyeli (AIP), doğrudan iyonizasyon potansiyeli (VIP), adyabatik elektron ilgisi (AEA), doğrudan elektron ilgisi (VEA), doğrudan ayrılma enerjisi (VDE), HOMO-LUMO enerji aralığı (Eg) ve bağlanma enerjisi B3LYP/6-311++G** teori seviyesinde incelendi ve en kararlı izomerler tartışıldı. Yük dağılımı ve çekirdekten bağımsız kimyasal kayma analizleri de gerçekleştirildi. B2C4H4 and C6H6 serileri IP, EA ve Eg hesaplamaları sonucunda en kararlı seriler olarak bulunmuştur. Benzen tipi yapı BC5H5 (n=5) serisi için en kararlı isomer olarak bulunmuştur ve bu yapı benzen kadar aromatik olabilir.

STRUCTURAL AND ELECTRONIC PROPERTIES OF B6-nCnHn (n=0-6) SERIES UPON THE SUBSTITUTION OF BORON ATOMS BY THE C-H GROUPS: A DENSITY FUNCTIONAL THEORY STUDY

In this study, the structural and energetic properties of B6-nCnHn (n=0-6) series wereinvestigated using Density Functional Theory (DFT) approach. Adiabatic ionization potential (AIP),vertical ionization potential (VIP), adiabatic electron affinity (AEA), vertical electron affinity (VEA),vertical detachment energy (VDE), HOMO-LUMO energy gap (Eg) and binding energy (Eb) have beeninvestigated at the B3LYP/6-311++G** level of theory and discussed for the most stable isomers. Chargedistribution and nucleus independent chemical shift (NICS) analysis were also performed. B2C4H4 andC6H6 series are the most stable among considered series by calculating ionization potentials (IPs),electron affinities (EAs) and Eg. The benzene-like structure is found to be the most stable isomer for n=5(BC5H5), and it can be as aromatic as benzene.

___

  • Alexandrova AN, Boldyrev AI, Zhai HJ, et al (2003) Structure and bonding in B6(-) and B6: Planarity and antiaromaticity. J Phys Chem A 107:1359–1369. doi: 10.1021/jp0268866
  • Barth RF, Coderre JA, Vicente MGH, Blue TE (2005) Boron neutron capture therapy of cancer: Current status and future prospects. Clin Cancer Res 11:3987–4002. doi: 10.1158/1078-0432.CCR-05-0035
  • Becke AD (1993) A new mixing of hatree-fock and local density functional theories. J Chem Phys 98:1372–1377. doi: 10.1063/1.464304 Dennington R, Keith TA, Millam JM (2009) GaussView 5.0.9
  • Dinadayalane TC, Priyakumar UD, Sastry GN (2004) Exploration of C6H6 potential energy surface: A computational effort to unravel the relative stabilities and synthetic feasibility of new benzene isomers. J Phys Chem A 108:11433–11448. doi: 10.1021/jp0467696
  • El-Zaria ME, Arii H, Nakamura H (2011) m-Carborane-Based Chiral NBN Pincer-Metal Complexes: Synthesis, Structure, and Application in Asymmetric Catalysis. Inorg Chem 50:4149–4161. doi: 10.1021/ic2002095
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01.
  • Galeev TR, Boldyrev AI (2011) Planarity takes over in the CxHxP6-x (x=0-6) series at x=4. Phys Chem Chem Phys 13:20549–20556 . doi: 10.1039/c1cp21959f
  • Grimes RN (2013) Synthesis and serendipity in boron chemistry: A 50 year perspective. J Organomet Chem 747:4–15. doi: 10.1016/j.jorganchem.2013.04.018
  • Ivanov AS, Boldyrev AI (2012) Si6-nCnH6 (n=0-6) series: when do silabenzenes become planar and global minima? J Phys Chem A 116:9591–9598. doi: 10.1021/jp307722q
  • Ivanov AS, Bozhenko K V, Boldyrev AI (2012) Peculiar Transformations in the CxHxP4-x (x=0-4) Series. J Chem Theory Comput 8:135–140. doi: 10.1021/ct200727z
  • Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2002) Electronic requirements for macropolyhedral boranes. Chem Rev 102:93–144. doi: 10.1021/cr990356x
  • Jemmis ED, Kiran B, Coffey D (1997) Ab initio studies on disubstituted closo-icosahedral heteroboranes, X2B10H10 (X=CH, SiH, N, P, and Sb). Chem Berichte-Recueil 130:1147–1150. doi: 10.1002/cber.19971300818
  • Jiang W, Chizhevsky IT, Mortimer MD, et al (1996) Carboracycles: Macrocyclic compounds composed of carborane icosahedra linked by organic bridging groups. Inorg Chem 35:5417–5426. doi: 10.1021/ic960354k
  • Li X (2017) Structural, electronic and spectral properties of carborane-containing boron dipyrromethenes (BODIPYs): A first-principles study. Spectrochim Acta Part A-Molecular Biomol Spectrosc 185:149– 154. doi: 10.1016/j.saa.2017.05.047
  • McLemore DK, Dixon DA, Strauss SH (1999) Density functional theory and fluorocarboranes I. Trends in B-H and B-F distances and dissociation energies for CB11H12-nFn- anions (n=0, 1, 6, 11). Inorganica Chim Acta 294:193–199. doi: 10.1016/S0020-1693(99)00285-6
  • Muz I, Atis M (2016) Structural transformations in the carborane series: CnB6-nH6 (n=0-6) upon substitution of boron by carbon. Inorganica Chim Acta 453:626–632. doi: 10.1016/j.ica.2016.09.035
  • Schleyer P V, Maerker C, Dransfeld A, et al (1996) Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318. doi: 10.1021/ja960582d
  • Schleyer P V, Najafian K (1998) Stability and three-dimensional aromaticity of closo-monocarbaborane anions, CBn-1Hn-, and closo-dicarboranes, C2Bn-2Hn. Inorg Chem 37:3454–3470. doi: 10.1021/ic980110v
  • Scholz M, Hey-Hawkins E (2011) Carbaboranes as Pharmacophores: Properties, Synthesis, and Application Strategies. Chem Rev 111:7035–7062 . doi: 10.1021/cr200038x
  • Smith K (1990) Synthetic Chemistry-Boron Molecular Gymnastics. Nature 348:115–116. doi: 10.1038/348115b0
  • Soloway AH, Werner Tjarks, Beverly A. Barnum, et al (1998) The Chemistry of Neutron Capture Therapy. Chem Rev 98:1515–1562. doi: 10.1021/cr941195u
  • Spokoyny A ~M., Machan C ~W., Clingerman D ~J., et al (2011) A coordination chemistry dichotomy for icosahedral carborane-based ligands. Nat Chem 3:590–596. doi: 10.1038/nchem.1088
  • Takano K, Izuho M, Hosoya H (1992) Abinitio Molecular-Orbital Study of Electronic-Structures of ClosoBorane Anions Bnhn2- and Closo-Carboranes C2bn-2hn. J Phys Chem 96:6962–6969. doi: 10.1021/j100196a021
  • Valliant JF, Guenther KJ, King AS, et al (2002) The medicinal chemistry of carboranes. Coord Chem Rev 232:173–230. doi: 10.1016/S0010-8545(02)00087-5
  • Westerhausen M, Guckel C, Schneiderbauer S, et al (2001) The first barium-carborate complex: Synthesis and structural investigation. Angew Chemie-International Ed 40:1902–1904 . doi: 10.1002/1521- 3773(20010518)40:10<1902::AID-ANIE1902>3.0.CO;2-V
  • Williams RE (1976) Coordination Number Pattern Recognition Theory of Carborane Structures*. In: Emeléus HJ, Sharpe AG (eds). Academic Press, pp 67–142
Selçuk Üniversitesi Mühendislik Bilim ve Teknoloji Dergisi-Cover
  • ISSN: 2147-9364
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2013
  • Yayıncı: Selçuk Üniversitesi Mühendislik Fakültesi