Sübstitüe Perimidin Ligantları ile Metal Klorürlerin Varlığında CO2’in Organik Ürünlere Dönüşümü

Bu çalışmada 2-piridinkarboksaldehit/Kinolin-2-karboksaldehit ve 1,8-diaminonaftalenden yola çıkılarak sübstitüe perimidin ligant sistemleri (L1ve L2) sentezlendi. Bu bileşiklerin yapıları 1H ve 13C-NMR Spektroskopisi, FT-IR, UV Spektroskopisi, Kütle Spektroskopisi, Elementel Analiz ve Erime Noktası Ölçümü yöntemleri ile aydınlatıldı. Elde edilen bileşikler (L1ve L2) ve metal tuzları (ZnCI2 ve CuCI2) birlikte kullanılarak insutu sistemi ile CO2’in halkalı karbonatlara dönüşüm reaksiyolarında katalizör olarak katalitik etkileri araştırıldı. Kinolin-2-karboksaldehit sübstitüenti içeren L2 ligantı ve ZnCI2’ün oluşturduğu in situ sistemi %90.4 verim ve %99.4 seçicilikle en aktif katalizör sistemi olarak tespit edildi.

Conversion of CO2 to Organic Products in the Presence of Metal Chlorides with Substituted Perimidine Ligants

In this study, substituted perimidine ligant systems (L1and L2) derived from 2-pyridinecarboxaldehyde/quinoline-2-carboxaldehyde and 1,8-diaminonaphthalene has been synthesized. The structures of these compounds were characterized by means of NMR (1H and 13C) spectra, FT-IR spectra, UV-Vis spectra, mass spectra, melting point measurements, as well as elemental analysis (C, H, N). The obtained and fully chatacterized compounds (L1and L2) and metal salts (ZnCI2 ve CuCI2) were used together as insutu catalytic system and investigated their activity. The in situ system of L2 ligant bearing the quinoline-2-carboxaldehyde and ZnCI2 showed superior activity (90.4% yield and 99.4% selectivity).

___

  • Aresta M and Dibenedetto A (2007). Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans. 28: 2975-2992.
  • Aytar E (2013). İyonik Sivilar Ve Nn Tipi Zn-Katalizörleri Varliğinda CO2’in Organik Ürünlere Dönüşümü, Master Tezi. Harran Üniversitesi Fen Bilimleri Enstitüsü.
  • Bai D, Nian G, Wang G, Wang Z (2013). Titanocene dichloride/KI: an efficient catalytic system for synthesis of cyclic carbonates from epoxides and CO2. Appl Organometal Chem, 27: 184-187.
  • Britovsek GJ, Gibson VC, Wass DF (1999). The search for new‐generation olefin polymerization catalysts: life beyond metallocenes. Angewandte Chemie International Edition 38(4): 428-447.
  • Giani AM, Lamperti M, Maspero A, Cimino A, Negri R, Giovenzana GB, Nardo L (2016). Journal of Lumınescence 179: 384.
  • He Q, O’Brien JW, Kitselman KA, Tompkins LE, Curtis GCT, Kerton FM (2014). Synthesis of cyclic carbonates from CO2 and epoxides using ionic liquids and related catalysts including choline chloride–metal halide mixtures. Catal Sci Technol 4:1513-1528.
  • Hekimoğlu B, Altindeğer M (2008). Küresel Isinma Ve İklim Değişikliği. Samsun Valiliği İl Tarım Müdürlüğü 1-79.
  • Ittel SD, Johnson LK, Brookhart M (2000). Late-metal catalysts for ethylene homo-and copolymerization. Chemical Reviews 100(4): 1169-1204.
  • Karaman S, Gökalp Z (2010). Küresel Isınma ve İklim Değişikliğinin Su Kaynakları Üzerine Etkileri. Tarım Bilimleri Araştırma Dergisi 1: 59-66.
  • Kilic A, Kilic MV, Ulusoy M, Durgun M, Aytar E, Dagdevren M, Yilmaz I (2014). Ketone synthesized cobaloxime/organocobaloxime catalysts for cyclic carbonate synthesis from CO2 and epoxides: Characterization and electrochemistry. Journal of Organometallic Chemistry 767: 150-159.
  • Kilic A, Ulusoy M, Durgun M, Aytar E, Keles A, Dagdevren M, Yilmaz I (2014). The synthesis, characterization, and electrochemistry of molecular cobaloxime/organocobaloxime: catalysts for cycloaddition of carbon dioxide and epoxides. Journal of Coordination Chemistry 67(16): 2661-2679.
  • Kilic A, Ulusoy M, Durgun M, Aytar E (2014). The multinuclear cobaloxime complexes-based catalysts for direct synthesis of cyclic carbonate from of epichlorohydrin using carbon dioxide: Synthesis and characterization. Inorganica Chimica Acta 411: 17-25.
  • Kilic A, Durgun M, Aytar E, Yavuz, R (2018). Synthesis and characterization of novel positively charged organocobaloximes as catalysts for the fixation of CO2 to cyclic carbonates. Journal of Organometallic Chemistry 858: 78-88.
  • Morkovnik AS, Okhlobystin OY (1980). Heterocyclic cation radicals. Chemistry of Heterocyclic Compounds 16(8): 777-794.
  • Omae I (2006). Aspects of carbon dioxide utilization. Catalysis Today 115: 33-52.
  • Riduan SN, Zhang Y (2010). Recent developments in carbon dioxide utilization under mild conditions. Dalton Trans. 39: 3347-3357.
  • Sakakura T, Kohno K (2009). The synthesis of organic carbonates from carbon dioxide. Chemical Communications 11: 1312-1330.
  • Seçkin T, Köytepe S, Demir S, Özdemir I, Cetinkaya B (2003). Novel type of metal-containing polyimides for the Heck and Suzuki–Miyaura cross-coupling reactions as highly active catalysts. Journal of Inorganic and Organometallic Polymers 13(4): 223-235.
  • Shaikh AA G, Sivaram S (1996). Organic carbonates. Chemical reviews 96(3): 951-976.
  • Stamp LM, Mang SA, Holmes AB, Knights KA, de Miguel YR, McConvey IF (2001). Polymer supported chromium porphyrin as catalyst for polycarbonate formation in supercritical carbon dioxide. Chemical Communications 23: 2502-2503.
  • Sogukomerogullari HG, Aytar E, Ulusoy M, Demir S, Dege N, Richeson DS, Sönmez M (2018). Synthesis of complexes Fe, Co and Cu supported by “SNS” pincer ligands and their ability to catalytically form cyclic carbonates. Inorganica Chimica Acta 471: 290-296.
  • Ulusoy M, Cetinkaya E, Cetinkaya B (2009). Conversion of carbon dioxide to cyclic carbonates using diimine Ru (II) complexes as catalysts. Applied Organometallic Chemistry 23(2): 68-74.