Dimetilamonyum-Montmorillonit Kompleksinin Dielektrik Parametrelerinin Belirlenmesi

Bu çalışmada, Edirne-Enez bölgesinden alınan Ca-montmorillonit türü kil numunesine kısa zincirli amin grubundan dimetilamonyum hidroklorür adsorplanarak elde edilen kil-organik kompleksinin dielektrik parametreleri belirlenmiştir. Bu işlemde, numunenin 5Hz-13MHz aralığında ölçülen admitans değerlerinden hesaplanan kompleks geçirgenliğin reel ve sanal kısımları elektrik modülü formalizminde ifade edilmişitir. Bu parametrelerin belirlenmesinde, yukarıdaki frekans bölgesinde etkili olan yönelimli ve arayüzeysel kutuplanma mekanizmalarını en genel biçimde temsil eden teorik bağıntı (Havriliak-Negami ve güç yasalı iletkenlik bağıntılarının toplamı olan) deneysel verilere uydurulmuştur.

Determination of Dielectric Parameters of Dimethylammonium-Montmorillonite Complex

In this study, we have determined the dielectric properties of the clayorganic complex obtained by adsorption of a short chained amine, namely dimethylammonium hydrochloride, on a Ca-montmorillonite type clay sample picked from Edirne-Enez area. Complex electrical permittivity of the sample are calculated from the admittance values measured in the 5Hz-13MHz range, and these permittivities are expressed using electric modulus formalism. The dielectrical parameters are determined by fitting a theoretical expression, containing the orientational (Havriliak-Negami) and interfacial (conductivity with power law) polarization mechanisms effective in the above frequency region, to the experimental data.

___

  • 1. Bailey, S.W., 1980b. Structures of Layer Silicates.Crystal Structures of Clay Minerals and their X-Ray Identification. Brindley, G. W., Brown; G. (Eds.), ch.1, London, Mineralogical Society.
  • 2. Calvet, R., 1975. Dielectric Properties of Montmorillonites Saturated by Bivalent Cations. Clays and Clay Miner., 23, 257-265.
  • 3. Blum, G., Maier, H., Sauer, F. and Schwan, H. P., 1995. Dielectric Relaxation of Colloidal Particle Suspensions at Radio Frequencies Caused by Surface Conductance. J. Phys. Chem. , 99, 780-789.
  • 4. Ishida, T., Makino, T. and Wang, C., 2000. Dielectric Relaxation Spectroscopy of Kaolinite, Montmorillonite, Allophane and Imogolite under Moist Conditions. Clays and Clay Miner., 48, 1, 75-84.
  • 5. Dudley, L.M., Bialkowski, S., Or, D. and Junkermeier, C., 2003. Low Frequency Impedance Behavior of Montmorillonite Suspensions: Polarization Mechanisms in the Low Frequency Domain. Soil Sci. Soc. Am. J., 67, 518-526.
  • 6. Logsdon, S. and Laird, D. 2004. Cation and Water Content Effects on Dipole Rotation Activation Energy of Smectites. Soil Sci. Soc. Am. J., 68, 5, 1586-1591.
  • 7. Taşer, M., 1998. Kil Minerallerinde Adsorpsiyonun Etkisinin Kırınım Yöntemleriyle İncelenmesi, Doktora Tezi, Selçuk Üniv, Fen Bil. Enst., Konya.
  • 8. Cole, K.S. and Cole, R.H., 1941, J.of Chem. Phys., p.341.
  • 9. Hedvig, P., 1977. Dielectric Spectroscopy of Polimers. John Wiley & Sons Ltd., New York, 282-287.
  • 10. Debye, P.,1929, Polar Molecules. Dover Publications, Inc., Reinhold Publishing Corporation, Germany.
  • 11. Havriliak, S. and Negami, S., 1966, Journal of Polymer Science, C14, p.99.
  • 12. Davidson, D.W. and Cole, R.H.,1950, Journal of Chemical Physics, 18, p.1417.
  • 13. Tsangarıs G.M., Psarras, G.C. and Kouloumbi, C.,1998, Electric Modulus and Interfacial Polarization in Composite Polymeric Systems. Journal of Materials Science, 33, 2027-2037.
  • 14. Bona, N., Ortenzi, A. And Capaccioli, S., 2002. Advances in Understanding The Relationship Betwen Rock Wettability And High–Frequency Dielectric Response. Journal of Petroleum Science And Engineering 33, 1-3, 87-99.
  • 15. McCrum, N.G., Read, B.E. and Williams, G., 1967. Anelastic and Dielectric Effects in Polymeric Solids,.John Wiley, London, p.102-121.
  • 16. Kaya, A., Fang, H.Y. 1997. Identification of Contamined Soils by Dielectric Constant and Electrical Conductivity. Journal of Environmental Engineering, P.169-177.
  • 17. Molak, A., Paluch, M., Pawlus, S., Klimontko, J., Ujma, Z. And Gruszka, I. 2005. Electric Modulus Approach to the Analysis of Electric Relaxation in Highly Conducting (Na0.75Bi0.25)(Mn0.25Nb0.75)O3 Ceramics. J. Phys. D: Appl. Phys. 38, 1450-1460