Biyomimetik poröz dental implantların konvansiyonel dental implantlarla statik, dinamik ve çarpma yükleme koşullarında davranışlarının karşılaştırılması (3 boyutlu sonlu eleman analizi)

Amaç: Kemiğe benzer elastik modül değerleri ve kemik dokusunun gelişimin izin vermesi sebebi ile biomimetik poröz yapılar, konvansiyonel implantların yerine önerilmiştir. Ancak, farklı porözite oranına ve porözitenin farklı bölgelerde bulunmasını simüle edecek sınırlı çalışma vardır. Bu çalışmanın amacı, konvansiyonel dental implantlar ile çeşitli bölgelerinde poröziteye sahip ve farklı miktarlarda porozite içeren dört farklı biyomimetik implant tasarımı etrafındaki kortikal ve spongioz kemik dokusunda meydana gelen stres dağılım düzeylerini değerlendirmektir. Gereç ve Yöntemler: 3 boyutlu sonlu eleman analizi için, üstçene posterior bölgede 2 adet implant üzerine yapılan 3 üyeli kanat uzantılı sabit bölümlü protez matematiksel olarak modellendi. Elde edilen model üzerine, dikey ve oblik uygulanmış; statik, dinamik ve çarpma yükleri uygulanmıştır. Vertikal yük olarak kronların merkezi fossaları üzerinde 300 N dikey yük uygulanmıştır. Oblik yüklemede her bir dişin fonksiyonel palatinal tüberkülüne 45 ° 'lik bir açı ile 50 N yük uygulanmıştır. Bulgular: Çarpma yüklerinde, distaldeki konvansiyonel implant üzerinde aşırı stres değerleri oluşmuştur (1030 MPa). Bu değer titanyum alaşımının (Ti-6Al-4V) nihai gerilme mukavemetinden (930 MPa) daha fazladır. Sonuçlar, tüm yüzeyi gözenekli ve orta üçlü bölümü gözenekli implantların tüm yükleme koşulları için distal implantta daha düşük stres değerleri gösterdiği şeklinde özetlenebilir. Sonuç: Stres dağılımı açısından; porözitenin yeri, porözite miktarından daha kritiktir. Çarpma yükleme, implant destekli protez için kritik bir parametredir. Biyomimetik poröz implantların tasarımı için çarpma yükünün gözlenmesi ve önlenmesi düşünülmelidir. Orta üçlüsü poröz biyomimetik implant tasarımı, çarpma yükleme stresini azaltmak için en başarılı tasarımdır.

Comparing static, dynamic and impact loading behavior of biomimetic porous dental implants with conventional dental implants (3d finite element analysis)

Background: Porous structures instead of bulk structures have been suggested for implants because porous structures have elactic modulus similar to natural bone and allow bone tissue ingrowth. But there are limited studies to simulate porous implants with different amount of porosity at different locations The purpose of this study was to evaluate the stress distribution levels at cortical and spongious bone tissue that occurred around commercially available dental implants and four different biomimetic implant design with various porous parts and porosity amounts.Methods: 3-dimensional finite element analysis was conducted using mathematical models of unilateral 3-unit cantilever fixed partial dentures (FPD) subjected to vertical and oblique rotated static, dynamic and impact occlusal loads. Vertical load of 300 N was applied to the model over the central fossa of the crowns. Oblique load of 50 N were applied per tooth over the functional palatinal tubercule at an angle of 45 °.Results: Impact loading conditions create excessive stress values at distal dense titanium implants (1030 MPa). This was more than the ultimate tensile strength of dense titanium alloy Ti-6Al-4V (930 MPa). It might be summarized as fully porous and middle section porous implants showed lower stress values at distal implant for all loading conditions.Conclusion: The location of porosity is more critical than the amount of porosity for stress distribution. The distributions of stress at implants and surrounding bone mainly depended on the location of the porosity. Impact loading is a critical parameter for implant-supported prosthesis. Observance and prevention of impact loading should be considered for designing biomimetic porous implants. The porous biomimetic implant design with porous middle sections was the most successful design to decrease impact loading stress.

___

  • 1. Xiong Y, Qian C, Sun J. Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures. Dental Materials Journal. 2012;31:815-820.
  • 2. Branemark PI. Osseointegration and its experimental background. The Journal of Prosthetic Dentistry. 1983;50:399-410.
  • 3. Thelen S, Barthelat F, Brinson LC. Mechanics considerations for microporous titanium as an orthopedic implant material. Journal of Biomedical Materials Research Part A. 2004;69:601-610.
  • 4. Leite D D, Nascimento F O, Graça, M L, Carvalho Y R, Cairo C A. Porous titanium for biomedical applications: an experimental study on rabbits. Medicina Oral, Patologia Oral y Cirugia Bucal. 2010; 15(2), e407-12.
  • 5. Mour M, Das D, Winkler T, Hoenig E, Mielke G, Morlock MM, et al. Advances in porous biomaterials for dental and orthopaedic applications. Materials. 2010;3:2947-2974.
  • 6. Wisutmethangoon S, Nu-Young P, Sikong L, Plookphol T. Synthesis and characterization of Porous titanium. Songklanakarin Journal of Science & Technology. 2008; 30(4).
  • 7. Spoerke ED, Murray NG, Li H, Brinson LC, Dunand DC, Stupp SI. A bioactive titanium foam scaffold for bone repair. Acta Biomater. 2005;1:523-533.
  • 8. Liu X, Wu S, Yeung KW, Chan Y, Hu T, Xu Z, et al. Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Biomaterials. 2011;32:330-338.
  • 9. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474-5491.
  • 10. Schiefer H, Bram M, Buchkremer H, Stöver D. Mechanical examinations on dental implants with porous titanium coating. Journal of Materials Science: Materials in Medicine. 2009;20:1763-1770.
  • 11. Chen L-j, Ting L, Li Y-m, Hao H, Hu Y-h. Porous titanium implants fabricated by metal injection molding. Transactions of Nonferrous Metals Society of China. 2009;19:1174-1179.
  • 12. Shen H, Oppenheimer S, Dunand D, Brinson L. Numerical modeling of pore size and distribution in foamed titanium. Mechanics of Materials. 2006;38:933-944.
  • 13. Gültekin B A, Gültekin P, Yalcın S. Application of finite element analysis in implant dentistry. Finite Element Analysis: New Trends and Developments. Rijeka, Croatia: InTech Publishing. 2012; 21-54.
  • 14. El’Sheikh H, MacDonald B, Hashmi M. Finite element simulation of the hip joint during stumbling: a comparison between static and dynamic loading. Journal of Materials Processing Technology. 2003;143:249-255.
  • 15. Kayabaşı O, Yüzbasıoğlu E, Erzincanlı F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Advances in Engineering Software. 2006;37:649-658.
  • 16. Okeson J. Causes of functional disturbances in the masticatory system. Management of temporomandibular disorders and occlusion 5th edn St Louis: Mosby 2003:149-189.
  • 17. Yokoyama S, Wakabayashi N, Shiota M, Ohyama T. The influence of implant location and length on stress distribution for three-unit implant-supported posterior cantilever fixed partial dentures. The Journal of Prosthetic Dentistry. 2004;91:234-240.
  • 18. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite element study. The Journal of Prosthetic Dentistry. 2004;91:144-150.
  • 19. Sato Y, Shindoi N, Hosokawa R, Tsuga K, Akagawa Y. Biomechanical effects of double or wide implants for single molar replacement in the posterior mandibular region. Journal of Oral Rehabilitation. 2000;27:842-845.
  • 20. Morneburg T R, Pröschel P A. Measurement of masticatory forces and implant loads: a methodologic clinical study. International Journal of Prosthodontics.2002;15(1).
  • 21. Baril E, Lefebvre LP, Hacking SA. Direct visualization and quantification of bone growth into porous titanium implants using micro computed tomography. Journal of Materials Science: Materials in Medicine. 2011;22:1321-1332.
  • 22. Aksornmuang J, Foxton RM, Nakajima M, Tagami J. Microtensile bond strength of a dual-cure resin core material to glass and quartz fibre posts. Journal of Dentistry. 2004;32:443-450.
  • 23. Pilliar R, Deporter D, Watson P, Valiquette N. Dental implant design–effect on bone remodeling. Journal of Biomedical Materials Research. 1991;25:467-483.
  • 24. Vaillancourt H, Pilliar RM, McCammond D. Factors affecting crestal bone loss with dental implants partially covered with a porous coating: a finite element analysis. The International Journal of Oral & Maxillofacial Implants. 1995;11:351-359.
  • 25. Yuan H, Kurashina K, de Bruijn JD, Li Y, De Groot K, Zhang X. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials. 1999;20:1799-1806.
  • 26. Larsson C, Thomsen P, Aronsson B-O, Rodahl M, Lausmaa J, Kasemo B, et al. Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials. 1996;17:605-616.
  • 27. Buser D, Schenk R, Steinemann S, Fiorellini J, Fox C, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. Journal of Biomedical Materials Research. 1991;25:889-902.
  • 28. D'Lima DD, Lemperle SM, Chen PC, Holmes RE, Colwell CW. Bone response to implant surface morphology. The Journal of Arthroplasty 1998;13:928-934.
  • 29. Merle C, Streit M, Volz C, Pritsch M, Gotterbarm T, Aldinger P. Bone remodeling around stable uncemented titanium stems during the second decade after total hip arthroplasty: a DXA study at 12 and 17 years. Osteoporosis International. 2011;22:2879-2886.
  • 30. Antonialli AÍS, Bolfarini C. Numerical evaluation of reduction of stress shielding in laser coated hip prostheses. Materials Research. 2011;14:331-334.
  • 31. Spoerke ED, Murray NG, Li H, Brinson LC, Dunand DC, Stupp SI. A bioactive titanium foam scaffold for bone repair. Acta Biomaterialia. 2005;1:523-533.
  • 32. Müller U, Imwinkelried T, Horst M, Sievers M, Graf-Hausner U. Do human osteoblasts grow into open-porous titanium. Eur Cell Mater. 2006;11:8-15.
  • 33. Murr L, Gaytan S, Medina F, Lopez H, Martinez E, Machado B, et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2010;368:1999-2032.
  • 34. Chahine G, Koike M, Okabe T, Smith P, Kovacevic R. The design and production of Ti-6Al-4V ELI customized dental implants. Jom. 2008;60:50-55.
  • 35. Wieding J, Jonitz A, Bader R. The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds. Materials. 2012;5:1336-1347.
  • 36. Mont MA, Hungerford DS. Proximally Coated Ingrowth Prostheses: A Review. Clinical Orthopaedics and Related Research. 1997;344:139-149.
  • 37. Simske SJ, Ayers RA, Bateman T. Porous materials for bone engineering. Materials science forum: Trans Tech Publ, 1997:151-182.
  • 38. Culhaoglu AK, Ozkir SE, Celik G, Terzioglu H. Comparison of two different restoration materials and two different implant designs of implant-supported fixed cantilevered prostheses: A 3D finite element analysis. European Journal of General Dentistry. 2013;2:144.
  • 39. Buser D, Belser UC, Lang NP. The original one‐stage dental implant system and its clinical application. Periodontology 2000. 1998;17:106-118.
  • 40. Stegaroiu R, Sato T, Kusakari H, Miyakawa O. Influence of restoration type on stress distribution in bone around implants: a three-dimensional finite element analysis. International Journal of Oral and Maxillofacial Implants. 1998;13:82-90.
  • 41. Bianchi A, Dolci Jr G, Sberna M, Sanfilippo S. Factors affecting bone response around loaded titanium dental implants: A literature review. Journal of applied biomaterials & biomechanics: JABB. 2004;3:135-140.
  • 42. Van Eijden T. Three-dimensional analyses of human bite-force magnitude and moment. Archives of oral biology. 1991;36:535-539.
  • 43. Helkimo E, Carlsson GE, Helkimo M. Bite force and state of dentition. Acta Odontologica Scandinavica. 1977;35:297-303.
  • 44. Haraldson T, Carlsson GE, Ingervall B. Functional state, bite force and postural muscle activity in patients with osseointegrated oral implant bridges. Acta Odontologica Scandinavica. 1979;37:195-206.
  • 45. Şahin S, Çehreli MC, Yalçın E. The influence of functional forces on the biomechanics of implant-supported prostheses—a review. Journal of dentistry. 2002;30:271-282.
  • 46. Chen L-J, Hao H, Li Y-M, Ting L, Guo X-P, Wang R-F. Finite element analysis of stress at implant–bone interface of dental implants with different structures. Transactions of Nonferrous Metals Society of China. 2011;21:1602-1610.
  • 47. Zhang J, Chen Z. The study of effects of changes of the elastic modulus of the materials substitute to human hard tissues on the mechanical state in the implant-bone interface by three-dimensional anisotropic finite element analysis. West China J Stomatol. 1998;16:274-278.
  • 48. Brunski JB. Biomechanical factors affecting the bone-dental implant interface. Clinical materials. 1992;10:153-201.
  • 49. Stegaroiu R, Kusakari H, Nishiyama S, Miyakawa O. Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis. International Journal of Oral and Maxillofacial Implants. 1998;13:781-790.
  • 50. Cotoros DL, Baritz MI, Opran CM, Bacanu G. Aspects concerning impact tests on composites for rigid implants. World Congress on Engineering, London England, 2009:1658-1661.
  • 51. Chen L. Finite Element Analysis of the Stress on the Implant-Bone Interface of Dental Implants with Different Structures. In: Ebrahimi F (ed). Finite Element Analysis - New Trends and Developments: InTech, 2012.
  • 52. Lemons JE. Dental implant biomaterials. The Journal of the American Dental Association. 1990;121:716-719.
  • 53. Wataha JC. Materials for endosseous dental implants. Journal of oral rehabilitation. 1996;23:79-90.
  • 54. Wataha JC. Materials for endosseous dental implants. Journal of oral rehabilitation 1996;23:79-90.
  • 55. McCracken M. Dental implant materials: commercially pure titanium and titanium alloys. Journal of prosthodontics 1999;8:40-43.
  • 56. Oh I-H, Nomura N, Hanada S. Microstructures and Mechanical Properties of Porous Titanium Compacts Prepared by Powder Sintering. Materials Transactions 2002;43:443-446.
Selcuk Dental Journal-Cover
  • ISSN: 2148-7529
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2014
  • Yayıncı: Selcuk Universitesi Dişhekimliği Fakültesi
Sayıdaki Diğer Makaleler

İki Farklı Frez Hızının Diş İmplantının Primer Stabilitesine Etkisinin Kıyaslanması: ex Vivo Çalışma

Cenker Zeki KOYUNCUOĞLU, Becem DEMİR

Çocuklarda glukoz -6- fosfat dehidrogenaz enzim eksikliği: 2 olgu sunumu

Özlem BALKAN, Ebru KÜÇÜKYILMAZ

Endodontide Ozonun Kullanımı

Deniz ALTUNÖZ ERDOĞAN, Ali ERDEMİR

Diş hekimlerinin total protezlerde kullandıkları ölçü yöntem ve tekniklerinin analizi

ALPER ÖZDOĞAN, Ayşegül HAZIR

ENDODONTİK TEDAVİ SONRASI MOLAR DİŞLERİN, ENDOKRON İLE PROTETİK REHABİLİTASYONU: OLGU SERİSİ

Sümeyye KOÇ, Serkan SARIDAĞ

Sosyodemografik Faktörlerin Dental Kaygı ve Dental Korku Üzerine Etkisinin Değerlendirilmesi

Selma EMİN OGLOU, Selçuk SAVAŞ, Ebru KÜÇÜKYILMAZ

Maksiller molar dişlerde kanal duvarı kalınlığının dental volümetrik tomografi ile değerlendirilmesi

Erinç ÖNEM, Bedriye Güniz BAKSI ŞEN, Irmak TURHAL, Hakan ŞEN

İlerletme Genioplastisinde Kullanılan 5 Farklı Fiksasyon Sisteminin Stabilite ve Stres Dağılımlarının Sonlu Elemanlar Analizi ile Değerlendirilmesi

Ahmet AKTI, Abdullah KALAYCI

İskeletsel sınıf III maloklüzyonlu ortognatik cerrahi hastalarında sefalometrik değişimlerin yaşam kalitesinin ve postoperatif memnuniyetin değerlendirilmesi

Ahmet VURAL, Zehra İLERİ, Mehmet AKIN

Bir grup üniversite öğrencisi arasında ağız hijyenine ilişkin tutum ve davranışlar: Kendiliğinden bildirim

Esma SARIÇAM, Mahmut Sertaç ÖZDOĞAN, Mustafa GÜMÜŞOK