AŞIRI DOZ KETEN TOHUMU (LINUM USITATISSIMUM L.) TÜKETİMİ RATLARDA KARACİĞER HASARINA NEDEN OLUR MU?

Doğal sağlık ürünleri ve fonksiyonel gıdalar, birçok hastalığın önlenmesi ve tedavisi için tüketilmektedir. Keten tohumu antikanser, antiviral, antibakteriyel ve antifungal özelliklere sahip fonksiyonel gıdalardan biridir. Yararlı etkilerinin yanı sıra bilinçsiz ve aşırı tüketilmesi toksik etkilere neden olabilmektedir. Bu çalışmada, farklı miktarlarda keten tohumu tüketiminin sıçan karaciğeri üzerindeki etkilerinin araştırılması planlanmıştır. Gereç ve Yöntem Sıçanlar; her grupta 8 adet olarak; kontrol grubu ve 7 gün süreyle sırasıyla; 1.4, 2.8 ve 5.6 g/kg/gün keten tohumu verilen deney grupları şeklinde dört gruba ayrılmıştır. Deney sonunda doku ve kan örneklerinde histolojik, immünohistokimyasal ve biyokimyasal analizler yapılmıştır. Bulgular Serum AST, ALT ve ALP değerleri 5,6 g/kg keten tohumu verilen grupta kontrol grubuna göre anlamlı olarak daha yüksek gözlendi (p değerleri 0.003, 0.012 ve 0.009). Albümin değerleri deney gruplarında kontrol grubuna göre anlamlı olarak düşük gözlendi (p0.05). Kontrol grubu ile deney grupları arasında histopatolojik bulgular arasında anlamlı farklar bulundu. Özellikle 5.6 g/kg keten tohumu grubunda tüm gruplara göre daha fazla histopatolojik bulgulara rastlandı. İmmünohistokimyasal analizlerde, en fazla boyama yoğunluğu 5,6 g/kg keten tohumu grubunda gözlemlendi. En yüksek pozitif boyanmaya sırasıyla NOX4, iNOS, TNF-α ve IL-6 boyanmalarında rastlandı. Sonuç Aşırı keten tohumu tüketiminin oksidatif stres ve toksisiteye bağlı olarak karaciğerde iltihaplanmaya neden olabileceği ve çalışmanın keten tohumu toksisitesi ile ilgili diğer çalışmalara katkı sağlayacağı düşünülmektedir.

DOES EXCESSIVE CONSUMPTION OF FLAXSEED (LINUM USITATISSIMUM L.) CAUSE A LIVER DAMAGE IN RAT MODELS?

Natural health products and functional foods are frequently consumed for the prevention and treatment of many diseases. Flaxseed is one of the functional foods with anticancer, antiviral, antibacterial and antifungal properties. In addition to its beneficial effects, excessive consumption without considering the appropriate dosage can cause toxic effects. In this study, it was planned to investigate the effects of different amounts of flaxseed consumption on rat liver. Materials and Methods Rats were randomly divided into four groups with 8 rats in each groups; control group and experimental groups which given flaxseed for 7 days; 1.4, 2.8 and 5.6 g/kg/day, respectively. At the end of the experiment, histological, immunohistochemical and biochemical analyzes were performed on tissue and blood samples. Results Serum AST, ALT and ALP values are significantly higher in 5.6 g/kg of flaxseed compared to control group (p values 0.003, 0.012 and 0.009, respectively). Albumin values were significantly lower in experimental groups compared to the control group (p0.05) in all experimental groups compared to control. In histopathological findings, there was significant difference in three groups compared to control group, especially in 5.6 g/kg of flaxseed group compared to others. As a result of immunohistochemical analyzes, staining intensity of the receptors was highest in 5.6 g/kg of flaxseed group. The highest positive staining was observed respectively in NOX4, iNOS, TNF-α and IL-6. Conclusion These results show that excessive consumption of flaxseed can cause oxidative stress and toxicity due to inflammation in the liver and this study can helpful other studies about flaxseed toxicity.

___

  • 1. Adolphe JL, Whiting SJ, Juurlink BH, Thorpe LU, Alcorn J. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. British Journal of Nutrition. 2010;103(7):929-38.
  • 2. Schmidt TJ, Klaes M, Sendker J. Lignans in seeds of Linum species. Phytochemistry. 2012;82:89-99.
  • 3. Zarepoor L, Lu JT, Zhang C, Wu W, Lepp D, Robinson L, et al. Dietary flaxseed intake exacerbates acute colonic mucosal injury and inflammation induced by dextran sodium sulfate. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2014;306(12):G1042-G55.
  • 4. Khan G, Penttinen P, Cabanes A, Foxworth A, Chezek A, Mastropole K, et al. Maternal flaxseed diet during pregnancy or lactation increases female rat offspring's susceptibility to carcinogen- induced mammary tumorigenesis. Reproductive Toxicology. 2007;23(3):397-406.
  • 5. Bernacchia R, Preti R, Vinci G. Chemical composition and health benefits of flaxseed. Austin J Nutri Food Sci. 2014;2(8):1045.
  • 6. Dzuvor CKO, Taylor JT, Acquah C, Pan S, Agyei D. Bioprocessing of functional ingredients from flaxseed. Molecules. 2018;23(10):2444.
  • 7. Parikh M, Maddaford TG, Austria JA, Aliani M, Netticadan T, Pierce GN. Dietary flaxseed as a strategy for improving human health. Nutrients. 2019;11(5):1171.
  • 8. Chung M, Lei B, Li-Chan E. Isolation and structural characterization of the major protein fraction from NorMan flaxseed (Linum usitatissimum L.). Food chemistry. 2005;90(1-2):271-9.
  • 9. Klotzbach-Shimomura K. Functional foods: The role of physiologically active compounds in relation to disease. Topics in Clinical Nutrition. 2001;16(2):68-78.
  • 10. Bekhit AE-DA, Shavandi A, Jodjaja T, Birch J, Teh S, Mohamed Ahmed IA, et al. Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatalysis and Agricultural Biotechnology. 2018;13:129-52.
  • 11. Kamali M, Bahmanpour S. Protective Effects of Flax Seed (Linum Usitatissimum) Hydroalcoholic Extract on Fetus Brain in Aged and Young Mice. Iranian journal of medical sciences. 2016;41(3 Suppl):S51.
  • 12. Pilar B, Güllich A, Oliveira P, Ströher D, Piccoli J, Manfredini V. Protective role of flaxseed oil and flaxseed lignan secoisolariciresinol diglucoside against oxidative stress in rats with metabolic syndrome. Journal of food science. 2017;82(12):3029-36.
  • 13. Kezimana P, Dmitriev AA, Kudryavtseva AV, Romanova EV, Melnikova NV. Secoisolariciresinol diglucoside of flaxseed and its metabolites: Biosynthesis and potential for nutraceuticals. Frontiers in genetics. 2018;9:641.
  • 14. Pourjafari F, Haghpanah T, Sharififar F, Nematollahi-Mahani SN, Afgar A, Karam GA, et al. Protective effects of hydro-alcoholic extract of foeniculum vulgare and linum usitatissimum on ovarian follicle reserve in the first-generation mouse pups. Heliyon. 2019;5(10):e02540.
  • 15. Abidi A, Kourda N, Feki M, Ben Khamsa S. Protective effect of Tunisian flaxseed oil against bleomycin-induced pulmonary fibrosis in rats. Nutrition and Cancer. 2020;72(2):226-38.
  • 16. Food, Administration D. Estimating the safe starting dose in clinical trials for therapeutics in adult healthy volunteers. Rockville, Maryland, USA: US: Food and Drug Administration. 2005.
  • 17. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry. 2004;37(4):277-85.
  • 18. Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical biochemistry. 2005;38(12):1103-11.
  • 19. Kosecik M, Erel O, Sevinc E, Selek S. Increased oxidative stress in children exposed to passive smoking. International journal of cardiology. 2005;100(1):61-4.
  • 20. Refaiy A, Muhammad E, ElGanainy E. Semiquantitative smoothelin expression in detection of muscle invasion in transurethral resection and cystectomy specimens in cases of urinary bladder carcinoma. African Journal of Urology. 2011;17(1).
  • 21. Cardoso Carraro JC, Dantas MIdS, Espeschit ACR, Martino HSD, Ribeiro SMR. Flaxseed and human health: reviewing benefits and adverse effects. Food Reviews International. 2012;28(2):203-30.
  • 22. Carvalho F, Lima VC, Costa IS, Medeiros AF, Serquiz AC, Lima MC, et al. A trypsin inhibitor from tamarind reduces food intake and improves inflammatory status in rats with metabolic syndrome regardless of weight loss. Nutrients. 2016;8(10):544.
  • 23. ŞAT İG, KELEŞ F. Fitik asit ve beslenmeye etkisi. GIDA. 2004;29(6):405-9.
  • 24. Rikans LE, Yamano T. Mechanisms of cadmium‐mediated acute hepatotoxicity. Journal of biochemical and molecular toxicology. 2000;14(2):110-7.
  • 25. Amamou F, Nemmiche S, kaouthar Meziane R, Didi A, Yazit SM, Chabane-Sari D. Protective effect of olive oil and colocynth oil against cadmium-induced oxidative stress in the liver of Wistar rats. Food and Chemical Toxicology. 2015;78:177-84.
  • 26. Liu L, Tao R, Huang J, He X, Qu L, Jin Y, et al. Hepatic oxidative stress and inflammatory responses with cadmium exposure in male mice. Environmental toxicology and pharmacology. 2015;39(1):229-36.
  • 27. Renugadevi J, Prabu SM. Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin. Experimental and Toxicologic Pathology. 2010;62(2):171-81.
  • 28. Kaur G, Shivanandappa TB, Kumar M, Kushwah AS. Fumaric acid protect the cadmium-induced hepatotoxicity in rats: owing to its antioxidant, anti-inflammatory action and aid in recast the liver function. Naunyn-schmiedeberg's Archives of Pharmacology. 2020.
  • 29. Omidifar N, Nili-Ahmadabadi A, Gholami A, Dastan D, Ahmadimoghaddam D, Nili-Ahmadabadi H. Biochemical and Histological Evidence on the Protective Effects of Allium hirtifolium Boiss (Persian Shallot) as an Herbal Supplement in Cadmium-Induced Hepatotoxicity. Evidence-Based Complementary and Alternative Medicine. 2020;2020.
  • 30. Shahidi F, Wanasundara P. Cyanogenic glycosides of flaxseeds. ACS Publications; 1997.
  • 31. Osoteku OA, Alabi MA, Kareem FA, Olugbemi SA. Hepatotoxicity studies of linamarin in low protein diet. IJESI. 2013;2:8-13.
  • 32. Uzunhisarcikli M, Kalender Y. Protective effects of vitamins C and E against hepatotoxicity induced by methyl parathion in rats. Ecotoxicology and environmental safety. 2011;74(7):2112-8.
  • 33. Satpute R, Bhutia Y, Lomash V, Bhattacharya R. Efficacy assessment of co-treated alpha-ketoglutarate and N-acetyl cysteine against the subchronic toxicity of cyanide in rats. Toxicology and industrial health. 2019;35(6):410-23.
  • 34. Domitrović R, Jakovac H, Blagojević G. Hepatoprotective activity of berberine is mediated by inhibition of TNF-α, COX-2, and iNOS expression in CCl4-intoxicated mice. Toxicology. 2011;280(1):33-43.
  • 35. Devkar ST, Kandhare AD, Zanwar AA, Jagtap SD, Katyare SS, Bodhankar SL, et al. Hepatoprotective effect of withanolide- rich fraction in acetaminophen-intoxicated rat: decisive role of TNF-α, IL-1β, COX-II and iNOS. Pharmaceutical Biology. 2016;54(11):2394-403.
  • 36. Tahir M, Rehman MU, Lateef A, Khan R, Khan AQ, Qamar W, et al. Diosmin protects against ethanol-induced hepatic injury via alleviation of inflammation and regulation of TNF-α and NF-κB activation. Alcohol. 2013;47(2):131-9.
  • 37. Umesalma S, Sudhandiran G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF‐κB, iNOS, COX‐2, TNF‐α, and IL‐6 in 1, 2‐dimethylhydrazine‐induced rat colon carcinogenesis. Basic & clinical pharmacology & toxicology. 2010;107(2):650-5.
  • 38. Tanaka Y, Kaibori M, Miki H, Nakatake R, Tokuhara K, Nishizawa M, et al. Alpha-lipoic acid exerts a liver-protective effect in acute liver injury rats. Journal of Surgical Research. 2015;193(2):675-83.
  • 39. Radwan RR, Mohamed HA. Nigella sativa oil modulates the therapeutic efficacy of mesenchymal stem cells against liver injury in irradiated rats. Journal of Photochemistry and Photobiology B: Biology. 2018;178:447-56.
  • 40. Fathy M, Khalifa EMMA, Fawzy MA. Modulation of inducible nitric oxide synthase pathway by eugenol and telmisartan in carbon tetrachloride-induced liver injury in rats. Life Sciences. 2019;216:207-14.
  • 41. Todorović N, Tomanović N, Gass P, Filipović D. Olanzapine modulation of hepatic oxidative stress and inflammation in socially isolated rats. European Journal of Pharmaceutical Sciences. 2016;81:94-102.
  • 42. de Paula do Nascimento R, Lima AV, Oyama LM, Paiotti APR, Cardili L, Martinez CAR, et al. Extra virgin olive oil and flaxseed oil have no preventive effects on DSS-induced acute ulcerative colitis. Nutrition. 2020;74:110731.