Structural Properties of Copper, Silver and Gold Nanorods under Strain: Molecular Dynamics Simulations

Çalışmada (100), (110), (111) düşük indisli yüzeylerden üretilmiş üç farklı kalınlıktaki bakır, gümüş ve altın nanotellerin yapısal özellikleri tek eksen boyunca uygulanan gerinim altında incelenmiştir. Klasik moleküler dinamik benzetişimleri 1 K ve 300 K sıcaklıklarında, atomlar arası iki parça etkileşimlerinden oluşan atomistik bir potansiyel kullanılarak gerçekleştirilmiştir. Gerinim nanotellere tek eksen ve tel boyunca uygulanmıştır. Gerinimin kesit geometrisine ve sıcaklığa bağımlılık gösterdiği bulunmuştur. (100) ve (110) yüzeylerinden üretilen nanotellerin (111) yüzeyinden üretilen nanotellere göre gerinim altında daha dayanıklı olduğu bulunmuştur. Sıcaklığın sünekliğe olumlu bir etkisi vardır. Nanoteller gerinim altında, parçalanmadan tek boyutlu formlar alamamıştır

Metal Nanoçubukların Yapı Özelliklerinin İncelenmesi: Molekül Dinamiği Benzetişimleri

Structural properties of copper, silver and gold nanowires with three different widths generated from low-index surfaces (100), (110), (111) have been investigated under strain. Classical molecular dynamics simulations have been performed at 1 K and 300 K using an atomistic potential consisting of two body interactions among the atoms. Strain has been applied to the nanowires along the uniaxial wire direction. It has been found that uniaxial strain shows cross section geometry and temperature dependent characteristics. The nanowires generated from (100) and (110) surfaces are relatively stronger against uniaxial strain than the nanowires generated from (111) surface. Temperature has a positive effect to the ductility of the nanowires. The nanowires under strain, could not form 1-D structures without fragmentation

___

  • Bowler, D. R. (2004). Atomic-scale nanowires: physical and electronic structure.
  • Journal of Physics: Condensed Matter, 16 (24), R721.
  • Chappert, C., Fert, A., and Van Dau, F. N. (2007). The emergence of spin electronics in data storage. Nature materials, 6 (11), 813-823.
  • Chen, C. Q., Shi, Y., Zhang, Y. S., Zhu, J.-L., and Yan, Y. J. (2006). Size dependence of young's modulus in ZnO nanowires. Phys. Rev. Lett., 96 (7), 075505.
  • Dasgupta, N. P., Sun, J., Liu, C., Brittman, S., Andrews, S. C., Lim, J., . . . Yang, P. (2014). 25th Anniversary article: semiconductor nanowires--synthesis, characterization, and applications. Advanced Materials, 2137-2184.
  • Dunn, J. D., Gall, K., and Martin, L. (2004). Atomistic simulation of the structure and elastic properties of gold nanowires. Journal of the Mechanics and Physics of Solids, 52 (9), 1935 - 1962.
  • Erkoç, Ş. (1994). An empirical many-body potential energy function constructed from pair-interactions. Zeitschrift für Physik D Atoms Molecules and Clusters Vol.32, 257.
  • Erkoç, Ş. (1997). Empirical many-body potential energy functions used in computer simulations of condensed matter properties. Physics Reports, 278 (2), 79--105.
  • Erkoç, Ş. (2001). Empirical potential energy functions used in the simulations of materials properties. Annual Review of Computational Physics Vol.9, World Scientific Ltd. pp1-103.
  • Erkoç, Ş. (2004). Lecture notes on simulations of many-particle systems, METU. (Unpublished).
  • FINBOW, B. G., MCDONALD, R. L.-B., and IR. (2010). Atomistic simulation of the stretching of nanoscale metal wires. Molecular Physics, 92 (4), 705- 714.
  • Fourkal, E., Velchev, I., Taffo, A., Ma, C., Khazak, V., and Skobeleva, N. (2009).
  • Photo-thermal cancer therapy using gold nanorods. World Congress on Medical Physics and Biomedical Engineering, IFMBE Proceedings (25), 761-763.
  • Haberer, E. D., Joo, J. H., Hodelin, J. F., and Hu, E. L. (2009). Enhanced photogenerated carrier collection in hybrid films of bio-templated gold nanowires and nanocrystalline CdSe. Nanotechnology, 20 (41), 415206. doi:10.1088/0957-4484/20/41/415206
  • Hwang, J.-W. K., and Ho-Jung. (2001). Mechanical deformation study of copper nanowire using atomistic simulation. Nanotechnology, 12 (3), 295.
  • Jmol. (2013). an open-source Java viewer for chemical structures in 3D. Retrieved from jmol: http://www.jmol.org Ju, S.-P., Lin, J.-S., and Lee, W.-J. (2004). A molecular dynamics study of the tensile behaviour of ultrathin gold nanowires. Nanotechnology, 15 (9), 1221.
  • Kharat, D., Muthurajan, H., and Praveenkumar, B. (2006). Present and futuristic military applications of nanodevices. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 36 (2), 231-235.
  • Koh, S. J., and Lee, H. P. (2006). Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires. Nanotechnology, 17 (14), 3451.
  • Liang, W., Zhou, M., and Ke, F. (2005). Shape memory effect in Cu nanowires. Nano Letters, 5 (10), 2039-2043.
  • Lu, S., and Panchapakesan, B. (2006). Hybrid platinum/single-wall carbon nanotube nanowire actuators: metallic artificial muscles. Nanotechnology, 17 (3), 888.
  • Murrell, J., Carter, S., Farantos, S., Huxley, P., and Varandas, A. (1984). Molecular potential energy functions. Wiley.
  • Natelson, D., Willett, R., West, K., and Pfeiffer, L. (2000). Fabrication of extremely narrow metal wires. Applied Physics Letters, 77 (13), 1991- 1993.
  • Parab, H. J., Chen, H. M., Lai, T.-C., Huang, J. H., Chen, P. H., Liu, R.-S., . . . Hwu, Y.-K. (2009). Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods. The Journal of Physical Chemistry C(113), 7574-7578.
  • Schofield, P. (1973). Computer simulation studies of the liquid state. Computer physics communications, 5 (1), 17-23.
  • Sorensen, M. R., Brandbyge, M., and Jacobsen, K. W. (1998). Mechanical deformation of atomic-scale metallic contacts: structure and mechanisms. Physical Review B, 57 (6), 3283.
  • Takei, K., Takahashi, T., Ho, J. C., Ko, H., Gillies, A. G., and Paul W. Leu, R. S. (2010). Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials, 9, 821–826. doi:10.1038/nmat2835
  • Walter, E. C., Penner, R. M., Liu, H., Ng, K. H., Zach, M. P., and Favier, F. (2002). Sensors from electrodeposited metal nanowires. Surf. Interface Anal., 34, 409–412. doi:10.1002/sia.1328
  • Wang, B., Yin, S., Wang, G., Buldum, A., and Zhao, J. (2001). Novel structures and properties of gold nanowires. Phys. Rev. Lett., 86 (10), 2046-2049.
  • Wang, X., Zhou, J., Song, Liu, J., Xu, N., and Wang, Z. L. (2006). Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6 (12), 2768-2772.
  • Wang, Y., and Ma, E. (2003). Temperature and strain rate effects on the strength and ductility of nanostructured copper. Applied physics letters, 83 (15), 3165-3167.
  • Wu, H. (2006). Molecular dynamics study on mechanics of metal nanowire. Mechanics Research Communications, 33 (1), 9-16.
  • Zhu, R., Chung, C.-H., Cha, K. C., Yang, W., Zheng, Y. B., Zhou, H., . . . Yang, Y.
  • (2011). Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano, 5 (12), 9877-9882. doi:10.1021/nn203576v