F-16 Savaş Uçağı İniş Takımındaki Yapısal Bir Parçanın Alüminyum ve Karbon Fiber Takviyeli Polimer Kompozit Malzeme Karşılaştırmalı Mukavemet Analizi

Bu çalışmada, F-16 savaş uçaklarında hâlihazırda kullanılmakta olan alüminyum alaşımlı ana iniş takımı FS 341.80 kodlu yapısal parçasının geometrik yapısı, ağırlığı ve sınır şartları tespit edilmiştir. Mevcut parçanın, dört farklı senaryo durumunda maruz kaldığı kuvvetlere göre sonlu elemanlar analizi Ansys Workbench yazılımı ile yapılmıştır. Ardından, aynı parçanın karbon fiber takviyeli polimer kompozit malzemeden sonlu eleman modeli oluşturulmuştur. Önceki dört senaryoda uygulanan yükleme durumları yeni kompozit malzeme modele de uygulanmıştır. Her iki malzeme ile oluşturulmuş modellerdeki eşdeğer gerilme, eşdeğer toplam gerinim, maksimum kayma gerilmesi ve toplam deformasyon değerleri hesaplanmıştır. Her iki malzeme için elde edilen sonuçlar karşılaştırılmıştır. Karşılaştırma sonucunda aynı yükleme ve sınır şartları için eşdeğer gerilme değerlerinde yaklaşık %0.8, eşdeğer toplam gerinim değerlerinde yaklaşık %12, maksimum kayma gerilmesi değerlerinde yaklaşık %0.7 ve toplam deformasyon değerlerinde yaklaşık %11.8 civarında azalma olduğu görülmüştür. Bunun yanında parçanın toplam kütlesi 31.17 kg’dan 20.77 kg’a inmiş; yani, %33,37 oranında azalma sağlanmıştır. Bu gelişmenin, uçağın ağırlığını azaltmanın yanında yorulma ömrünü ve bakım süresini de uzatması beklenmektedir.

Aluminum and Carbon Fiber Reinforced Polymer Composite Material Comparative Strength Analysis of a Structural Part in F-16 Fighter Aircraft Landing Gear

In this study, the geometric structure, weight and boundary conditions of the aluminum alloy main landing gear FS 34.180 structural part currently used in F-16 fighter aircraft are determined. Finite element (FE) analysis is performed considering the forces that the existing part is exposed to in four different scenarios with Ansys Workbench software. Then, a FE model of the same part is created from carbon fiber reinforced polymer (CFRP) composite material. The loading conditions applied in the four scenario are also applied to the new CFRP composite material model. Equivalent stress, equivalent total strain, maximum shear stress and total deformation values in the models created with both materials are calculated. The results obtained for both materials are compared. As a result of the comparison, it is observed that there is a decrease of approximately 0.8% in the equivalent stress, 12% in the equivalent total strain, 0.7% in the maximum shear stress and 11.8% in the total deformation values for the same loading and boundary conditions. In addition, the total mass of the part is reduced from 31.17 kg to 20.77 kg, which corresponds to a reduction of 33.37%. This development is expected to reduce the weight of the aircraft as well as extend the fatigue life and maintenance period.

___

  • Adeniran, O., Cong, W., & Aremu, A. (2022). Material design factors in the additive manufacturing of Carbon Fiber Reinforced Plastic Composites: A state-of-the-art review. Advances in Industrial & Manufacturing Engineering, 5, 1-18. https://doi.org/10.1016/j.aime.2022.100100
  • Altuntaş, G., & Bostan, B. (2022). Metallurgical characterization of natural aging effects on predeformed Al 7075/T651 alloy during retrogression and re-aging heat treatment. Kovove Materialy-Metallic Materials, 60(4), 209-222. doi.org/10.31577/km.2022.4.209
  • Atique, Md S.A., Probha, N.N., & Nafi, A.S. (2014, Dec 26-27). Polymer composites: a blessing to modern aerospace engineering. International Conference on Mechanical, Industrial and Energy Engineering, Khulna, Bangladesh. ICMIEE-PI-1402870
  • Battelle Memorial Institute. (2023). MMPDS Metallic materials properties development and standardization handbook.
  • Cevik, M. (2009). Effects of fiber orientation on out-of-plane and in-plane natural frequencies of angleply laminated composite arches. Journal of Reinforced Plastics and Composites, 28(1), 59-71. https://doi.org/10.1177/0731684407083003
  • Crosby, F. (2015). The Complete Guide to Fighters & Bombers of the World. Lorenz Books. https://www.amazon.in/Complete-Guide-Fighters-Bombers-World/dp/1846810000
  • Deo, R.B., Starnes, J.H., & Holzwarth, R.C. (2003). Low-Cost Composite Materials and Structures for Aircraft Applications. https://api.semanticscholar.org/CorpusID:111092384 Diambu, A. N., & Çevik, M. (2022, May 20-21). Finite element vibrational analysis of a porous functionally graded plate. 6th International Students Science Congress, İzmir, Türkiye. https://doi.org//10.52460/issc.2022.041
  • Esen, Y., & Ülker, M. (2005). Optimization of materially non-linear multi storey spaces frames by ANSYS. Doğu Anadolu Bölgesi Araştırmaları, 3(3), 127-131. https://dergipark.org.tr/tr/pub/fudad/issue/47052/591656
  • Faizan, M., & Gangwar, S. (2021). Tensile behaviour of carbon fiber reinforced polymer composite using ANSYS 21. Materials Today: Proceedings, 46(15), 6519-6526. https://doi.org/10.1016/j.matpr.2021.03.724
  • Godara, S.S., Brenia, V., Soni, A.K., Shekhawat, R.S., & Saxena, K.K. (2022). Design & analysis of connecting rod using ANSYS software. Materials Today: Proceedings, 56(4), 1896-1903. https://doi.org/10.1016/j.matpr.2021.11.166
  • Gökçe, H. (2021). Investigation of drilling performance of Al 1050-H14 alloy with high ductility. The Journal of Defense Sciences, 39, 179-209. https://doi.org/10.17134/khosbd.913742
  • Göker, Ü.D., Yazıcı, M., Balcı, G., Köksal, Ö., & Şengelen, H.E. (2021). The statistical analysis of air crash investigations from 1918 to 2019. The Journal of Defense Sciences, 2(40), 1-32. https://doi.org/10.17134/khosbd.1000317
Savunma Bilimleri Dergisi-Cover
  • ISSN: 1303-6831
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2002
  • Yayıncı: Milli Savunma Üniversitesi Alparslan Savunma Bilimleri ve Millî Güvenlik Enstitüsü