Two Significant Factors Affecting the Dimensions of the ZnO Nanorods During Chemical Bath Deposition: Precursor Solution Concentration and HMTA Content

Two Significant Factors Affecting the Dimensions of the ZnO Nanorods During Chemical Bath Deposition: Precursor Solution Concentration and HMTA Content

The effects of zinc ion concentration and hexamethylene tetramine (HMTA) content of the aqueous precursor solution on the aspect ratios of the one-dimensional (1D) ZnO nanorods during chemical bath deposition (CBD) were investigated. The ZnO nanorods were grown on these seeded substrates by the low-temperature CBD method at 95 °C for 5 h. In the first part of this investigation the zinc nitrate hexahydrate (ZNH) to HMTA molar ratio was kept constant at a ratio of 1:1 for each of the CBD solutions prepared with different Zn^(+2) ion concentrations of 0.025, 0.035, 0.050, and 0.075 M. The number densities of the nanorods (i.e., number of nanorods per unit area) were increased with the increasing concentration. In the second part, the ZNH to HMTA molar ratio was varied to differ from the 1:1 value and, in turn, to obtain the precursor solutions relatively rich in Zn^(+2) or OH^-ions. Here, the concentration of the precursor solution was kept constant at 0.05 M. The lateral growth perpendicular to the c-axis of the ZnO nanorods was found to be suppressed with the increasing HMTA content (e.g., for the ZNH to HMTA molar ratio of 0.4: 1) due to its capping effect. However, the precursor solution containing an excessive amount of HMTA led to a decrease in the probability of crystal growth, which has been attributed to the OH^- ion enrichment.

___

  • [1] I. Udom, M. K. Ram, E. K. Stefanakos, A. F. Hepp, D. Y. Goswami, “One dimensional-ZnO nanostructures: Synthesis, properties and environmental applications”, Materials Science in Semiconductor Processing, vol. 16, no. 6, pp. 2070–2083, 2013.
  • [2] M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, A. Z. Moshfegh, “Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review”, Research on Chemical Intermediates, vol. 45, pp. 2197–2254, (2019).
  • [3] C. J. Chang, M. H. Hsu, Y. C. Weng, C. Y. Tsay, C. K. Lin, “Hierarchical ZnO nanorod-array films with enhanced photocatalytic performance”, Thin Solid Films, vol. 528, pp. 167–174, 2013.
  • [4] T. Cossuet, E. Appert, J. L. Thomassin, V. Consonni, “Polarity-Dependent Growth Rates of Selective Area Grown ZnO Nanorods by Chemical Bath Deposition”, Langmuir, vol. 33, no. 25, pp. 6269–6279, 2017.
  • [5] B. Astinchap, R. Moradian, M. N. Tekyeh, “Investigating the optical properties of synthesized ZnO nanostructures by sol-gel: The role of zinc precursors and annealing time”, Optik, vol. 127, no. 20, pp. 9871–9877, 2016.
  • [6] A. A. Mohd Raub, J. Yunas, M. A. Mohamed, B. Bais, A. A. Hamzah, J. Ridwan, J. Kazmi, M. A. Hassan, “Synthesis and characterization of ZnO NRs with spray coated GO for enhanced photocatalytic activity”, Ceramics International, vol. 48, no. 13, pp. 18238-18245, 2022.
  • [7] N. Lepot, M. K. Van Bael, H. Van den Rul, J. D’Haen, R. Peeters, D. Franco, J. Mullens, “Synthesis of ZnO nanorods from aqueous solution”, Materials Letters, vol. 61, no. 13, pp. 2624–2627, 2007.
  • [8] L. Xu, Y. L. Hu, C. Pelligra, C. H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S. L. Suib, “ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity”, Chemistry of Materials, vol. 21, no. 13, pp. 2875–2885, 2009.
  • [9] N. T. Son, J. S. Noh, S. Park, “Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition”, Applied Surface Science, vol. 379, pp. 440-445, 2016.
  • [10] M. Kardeş, G. Başaran Dindaş, H. C. Yatmaz, N. Dizge, K. Öztürk, “CBD grown pure and Ce-doped ZnO nanorods: Comparison of their photocatalytic degrading efficiencies on AR88 azo dye under visible light irradiation”, Colloids Surface A Physicochemical Engineering Aspects, vol. 607, pp. 125451, 2020.
  • [11] K. Mosalagae, D. M. Murape, L. M. Lepodise, “Effects of growth conditions on properties of CBD synthesized ZnO nanorods grown on ultrasonic spray pyrolysis deposited ZnO seed layers”, Heliyon, vol. 6, no. 7, pp. e04458, 2020.
  • [12] M. Poornajar, P. Marashi, D. H. Fatmehsari, M. K. Esfahani, “Synthesis of ZnO nanorods via chemical bath deposition method: The effects of physicochemical factors”, Ceramics International, vol. 42, no. 1, pp. 173–184, 2016.
  • [13] A. F. Abdulrahman, S. M. Ahmed, S. M. Hamad, A. A. Barzinjy, “Effect of Growth Temperature on Morphological, Structural, and Optical Properties of ZnO Nanorods Using Modified Chemical Bath Deposition Method”, Journal of Electronic Materials, vol. 50, pp.1482–1495, 2021.
  • [14] Q. Liu, T. Yasui, K. Nagashima, T. Yanagida, M. Hara, M. Horiuchi, Z. Zhu, H. Takahashi, T. Shimada, A. Arima, Y. Baba, “Ammonia-Induced Seed Layer Transformations in a Hydrothermal Growth Process of Zinc Oxide Nanowires”, The Journal of Physical Chemistry C, vol. 124, no. 37, pp. 20563-20568. [15] S. Guillemin, L. Rapenne, H. Roussel, E. Sarigiannidou, G. Brémond, V. Consonni, “Formation mechanisms of ZnO nanowires: The crucial role of crystal orientation and polarity”, The Journal of Physical Chemistry C, vol. 117, no. 40, pp. 20738–20745, 2013.
  • [16] A. S. Kamble, B. B. Sinha, K. Chung, M. G. Gil, V. Burungale, C. J. Park, J. H. Kim, P. S. Patil, “Effect of hydroxide anion generating agents on growth and properties of ZnO nanorod arrays”, Electrochimica Acta, vol. 149, pp. 386–393, 2014.
  • [17] A. F. Abdulrahman, “Study the optical properties of the various deposition solutions of ZnO nanorods grown on glass substrate using chemical bath deposition technique”, Journal of Ovonic Research, vol. 16, no. 3, pp. 181–188, 2020.
  • [18] V. Strano, R. Giovanni Urso, M. Scuderi, K. O. Iwu, F. Simone, E. Ciliberto, C. Spinella, S. Mirabella, “Double Role of HMTA in ZnO Nanorods Grown by Chemical Bath Deposition”, The Journal of Physical Chemistry C, vol. 118, no. 48, pp. 28189–28195, 2014.
  • [19] B. Ikizler, S. M. Peker, “Effect of the seed layer thickness on the stability of ZnO nanorod arrays”, Thin Solid Films, vol. 558, pp. 149–159, 2014.
  • [20] S. Guillemin, V. Consonni, E. Appert, E. Puyoo, L. Rapenne, H. Roussel, “Critical nucleation effects on the structural relationship between ZnO seed layer and nanowires”, The Journal of Physical Chemistry C, vol. 116, no. 47, pp. 25106–25111, 2012.
  • [21] M. Kardeş, K. Öztürk, “Photocatalyst ZnO nanorod arrays on glass substrates: the critical role of seed layer in nanorod alignment and photocatalytic efficiencies”, Chemical Engineering Communication, vol. 207, no. 11, pp. 1522-1535, 2020.
  • [22] J. Singh, S. S. Patil, M. A. More, D. S. Joag, R. S. Tiwari, O. N. Srivastava, “Formation of aligned ZnO nanorods on self-grown ZnO template and its enhanced field emission characteristics”, Applied Surface Science, vol. 256, no. 21, pp. 6157–6163, 2010.
  • [23] P. Gu, X. Zhu, D. Yang, “Vertically aligned ZnO nanorods arrays grown by chemical bath deposition for ultraviolet photodetectors with high response performance”, Journal of Alloys and Compounds, vol. 815, pp. 152346, 2020.
  • [24] Y. Kajikawa, S. Noda, H. Komiyama, “Preferred orientation of chemical vapor deposited polycrystalline silicon carbide films”, Chemical Vapor Deposition, vol. 8, no. 3, pp. 99–104, 2002.
  • [25] A. Leelavathi, G. Madras, N. Ravishankar, “Origin of enhanced photocatalytic activity and photoconduction in high aspect ratio ZnO nanorods”, Physical Chemistry Chemical Physics, vol. 15, no. 26, pp. 10795–10802, 2013.
  • [26] A. Das, R. G. Nair, “Effect of aspect ratio on photocatalytic performance of hexagonal ZnO nanorods”, Journal of Alloys and Compounds, vol. 817, pp. 153277, 2020.
  • [27] K. M. McPeak, T. P. Le, N. G. Britton, Z. S. Nickolov, Y. A. Elabd, J. B. Baxter, “Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): Understanding the role of HMTA in ZnO nanowire growth”, Langmuir, vol. 27, no. 7, pp. 3672–3677, 2011.
  • [28] R. Parize, J. Garnier, O. Chaix-Pluchery, C. Verrier, E. Appert, V. Consonni, “Effects of Hexamethylenetetramine on the nucleation and radial growth of ZnO nanowires by chemical bath deposition”, Journal of Physical Chemistry C., vol. 120, no. 9, pp. 5242–5250, 2016.
  • [29] W. Feng, B. Wang, P. Huang, X. Wang, J. Yu, C. Wang, “Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine (HMTA): Understanding the role of HMTA in the formation of ZnO crystals”, Materials Science in Semiconductor Processing, vol. 41, pp. 462–469, 2016.
  • [30] H. Avireddy, H. Kannan, P. Shankar, G. K. Mani, A. J. Kulandaisamy, J. B. B. Rayappan, “Non-mutually exclusive dual role of hexamethylenetetramine on the growth of ZnO nanostructures and their sensing footprints”, Materials Chemistry and Physics, vol. 212, pp. 394–402, 2018.
Sakarya University Journal of Science-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi
Sayıdaki Diğer Makaleler

Synthesis and Structural Investigations of 1, 2-bis(2-ethoxybenzylidene)hydrazine

Sevgi KANSIZ

Venom Peptides of Crotalus atrox Against SARS-Cov-2 Spike Protein and Human ACE2 Receptor by Molecular Docking Analysis

Süleyman İLHAN

Two Significant Factors Affecting the Dimensions of the ZnO Nanorods During Chemical Bath Deposition: Precursor Solution Concentration and HMTA Content

Memnune KARDEŞ, Koray ÖZTÜRK

Synthesis and Characterization of Novel Water-Soluble Tetra-Substituted Zn(II) Phthalocyanine Containing Triazole and Galactose Moieties

Yasemin BAYĞU

Analysis of Occupational Health and Safety Risks in Beekeeping with FMEA Method

Mustafa ÖZDEMİR, Serhan KÖKHAN

An Ethnobotanical Study on Plants Used in the Treatment of Gynecological Diseases in Some Provinces of the Eastern Anatolia Region

Songül KARAKAYA, Zehra KIMIŞOĞLU, Ümit İNCEKARA, Özkan AKSAKAL, Yusuf Ziya SÜMBÜLLÜ, Ahmet POLAT

Kodlayıcı Hurwitz Tamsayıları: Küçük Kalanlı Bölme Özelliğine Sahip Hurwitz Tamsayıları

Ramazan DURAN

Mathematical Modelling of Shear Cutting Process of Grain Oriented Electrical Steels Using Regression Modelling

Nihat CELIK, Alaaddin TOKTAŞ

Conversion of Cellulose to 5-HMF in the Presence of Silica-Alumina Catalysts Synthesized by Dual Template at Low Temperature

Halit Levent HOŞGÜN, Özlem TOPÇU, Emir Zafer HOŞGÜN, Berrin BOZAN

A Research on the Anatomical and Ecological Characteristic of Onosma mollis DC. (Boraginaceae)

Sibel ULCAY