Substitute ftalosiyanin yüzeyinde amonyak adsorpsiyon kinetiği

2(3),9(10),16(17),23(24)- tetrakis-[4-nitro-2-(octyloxy)phenoxy]phthalocyaninato zinc(II) ince filmin amonyak algılama performansı ve nisbi nemin amonyak algılama özellikleri üzerindeki etkisi incelenmiştir. Sonuçlar filmin amonyak gazına maruz bırakılması durumunda, amonyak’ın kuvvetli bir elektron verici ve ftalosiyanin bileşiklerinin de p-tip yarıiletken özellik göstermelerine rağmen, beklenmedik bir şekilde iletkenliğinin arttığını göstermiştir. Ortamdaki nisbi nem oranının amonyak adsorpsiyonunu iyileştirdiği gözlemlenmiştir. Sensör yüzeyindeki amonyak adsorpsiyonunu temsil etmek üzere birkaç farklı kinetik model test edilmiş ve, adsorpsiyon sistemini temsil etmek üzere basit bir adsorpsiyon modelinin kullanılabileceği görülmüştür.  

Ammonia adsorption kinetics on substituted phthalocyanine thin film

The sensing performance of 2(3),9(10),16(17),23(24)- tetrakis-[4-nitro-2-(octyloxy)phenoxy]phthalocyaninato zinc(II)  thin film towards ammonia and the influence of relative humidity on it were studied. The results show that the exposure to ammonia gas leads to an increase in sensor current, which is unexpected because of the strong electron donating character of ammonia and p-type semiconductivity of phthalocyanine. This unexpected behavior is related to the change in electronic band structure of the Pc molecule. It was observed that relative humidity enhances the ammonia adsorption. Several adsorption kinetics model were employed to represent the ammonia adsorption on the sensor surface. Analysis of the experimental data indicated that a simple adsorption model can be used to represent our adsorption system.  

___

  • [1] G. K. Mani, J. B. B. Rayappan, “A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film”, Sensors and Actuators B vol. 183, pp. 459– 466, Jul. 2013.
  • [2] W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang, Z. Han, J. Langer, J. Economy, “Activated carbon fiber composites for gas phase ammonia adsorption”, Microporous and Mesoporous Materials vol.234, pp. 146-154, Nov. 2016.
  • [3] S. Bhuvaneshwari, N. Gopalakrishnan, “Hydrothermally synthesized Copper Oxide (CuO) superstructures for ammonia sensing”, Journal of Colloid and Interface Science vol. 480, pp. 76–84, Oct. 2016.
  • [4] L. L. Wang, Z. Lou, T. Fei, T. Zhang, “Templating synthesis of ZnO hollow nano- spheres loaded with Au nanoparticles and their enhanced gas sensing properties”, J.Mater.Chem. vol. 22, pp.4767–4771, Jan. 2012.
  • [5] D. V. Dao, K. Shibuya, T. T. Bui, S. Sugiyama, “Micromachined NH3 Gas Sensor with ppb-level Sensitivity Based on WO3 Nanoparticles Thin film”, Procedia Eng. vol.25, pp. 1149–1152, Sep. 2011.
  • [6] M. D’Arienzo, L. Armelao, C. M. Mari, S. Polizzi, R. Ruffo, R. Scotti, F.Morazzoni, “Macroporous WO3 thin films active in NH3 sensing: role of the hosted Cr isolated centers and Pt nanoclusters”, J.Am.Chem.Soc. vol. 133, pp. 5296–5304, Apr. 2011.
  • [7] A. Kolmakov, D. O. Klenov,Y. Lilach, S. Stemmer, M. Moskovits, “Enhanced gas sensing by individual SnO2 nano wires and nano belts functionalized with Pd catalyst particles”, Nano Lett. vol. 5, pp. 667–673, Apr. 2005.
  • [8] Z. Pang, Z. Yang, Y. Chen, J. Zhang, Q. Wang, F. Huang, Q. Wei, “A room temperature ammonia gas sensor based oncellulose/TiO2/PANI composite nanofibers”, Colloids and Surfaces A: Physicochem. Eng. Aspects vol. 494, pp. 248–255, Apr. 2016.
  • [9] E. Kakı, A. Altındal, B. Salih, Ö. Bekaroğlu, “Synthesis, characterization and gas sensing properties of novel homo and hetero dinuclear ball-type phthalocyanines”, Dalton Trans., vol. 44, pp. 8293–8299, Mar. 2015.
  • [10] J. Spadavecchia, G. Ciccarella, R. Rella, S. Capone, P. Siciliano, “Metallophthalocyanines thin films in array configuration for electronic optical nose applications”, Sensors and Actuators B vol. 96, pp. 489–497, Dec. 2003.
  • [11] B. Keskin, O. Okuyucu, A. Altındal, A. Erdoğmuş, “Novel indium(III) phthalocyanines; synthesis, photophysical and humidity sensing properties”, New J. Chem., vol. 40, pp. 5537—5545, Jun. 2016.
  • [12] A. Altındal, Ö. Kurt, A. Şengül, Ö. Bekaroğlu, “Kinetics of CO2adsorption on ball-type dicopper phthalocyanine thin film” , Sensors and Actuators B vol. 202, 373–381, Oct. 2014.
  • [13] L. Zhihua, Z. Xucheng, S. Jiyong, Z. Xiaobo, H. Xiaowei, H. E. Tahir, M. Holmes, “Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites”, Sensors and Actuators B vol. 226, pp. 553–562, 2016.
  • [14] B. Schöllhorn, J. P. Germain, A. Pauly, C. Maleysson, J. P. Blanc, “Influence of peripheral electron-withdrawing substituents on the conductivity of zinc phthalocyanine in the presence of gases. Part 1: reducing gase”, Thin Solid Films,vol. 326, pp. 245–250, Aug. 1998.
  • [15] X. Ma, H. Chen, M. Shi, G. Wu, M. Wang, J. Huang, “High gas-sensitivity and selectivity of fluorinated zinc phthalocyanine film to some non-oxidizing gases at room temperature”, Thin Solid Films, vol.489, pp. 257 – 261, Oct.2005.
  • [16] M. J. Jafari, M. E. Azim-Araghi, S. Barhemat, S. Riyazi, “Effect of post-deposition annealing on surface morphology and gas sensing properties of palladium phthalocyanine thin films”, Surf. Interface Anal. vol. 44, pp. 601–608, May. 2012.
  • [17] D. Kulaç, M. Bulut, A. Altındal, A. R. Özkaya, B. Salih, Ö. Bekaroğlu, “Synthesis and characterization of novel 4-nitro-2-(octyloxy)phenoxy substituted symmetrical and unsymmetrical Zn(II), Co(II) and Lu(III) phthalocyanines, Polyhedron”, vol. 26, pp. 5432–5440, Nov. 2007.
  • [18] A. W. Snow, W. R. Barger, “Phthalocyanine Films in Chemical Sensors”. Phthalocyanines: Properties and Applications; Lever, A. B. P., Ed.; John Wiley and Sons: New York, 1989; Vol. 1, p. 341.
  • [19] G. Guillaud, J. Simon, J.Germain, “ Metallophthalocyanines-Gas sensors, resistors and field effect transistors” Coord. Chem. Rev., vol. 178, pp. 1433- 1484, Dec.1998.
  • [20] S. P. Keizer, J. Mack, B. A. Bench, S. M. Gorun, M. J. Stillman, “Spectroscopy and electronic structure of electron deficient zinc phthalocyanines”, J. Am. Chem. Soc., vol. 125, pp. 7067-7085, Jun. 2003.
  • [21] J. P. Germain, A. Pauly, C. Maleysson, J. P. Blanc, B. Schollhorn, “ Influence of peripheral electron-with drawing substituents on the conductivity of zinc phthalocyanine in the presence of gases”, Thin Solid Films , vol. 333, pp. 235-239, Nov. 1998.
  • [22] M. J. D. Low, “Kinetics of chemisorption of gases on solids”, Chemical Reviews, vol. 60, pp. 267-312, 1960.
  • [23] S.H. Chien, W.R. Clayton, “Application of Elovich equation to the kinetics of phosphate release and sorption in soils”, Soil Sci. Soc. Am. J. vol. 44, pp. 265–268, 1980.
  • [24] C.J. Liu, J.C. Hsieh, Y.H. Ju, “Response characteristics of lead phthalocyanine gas sensor: Effect of operating temperature and post deposition annealing”, J. Vac. Sci. Technol. A, vol. 14 pp. 753–756, May-Jun. 1996.