Optik Ağların Afet Sonrası Onarımı için Çoklu Tamirci Problemi

 Günlük aktivitelerimizi sağlamak için internete olan bağlılığımız nedeni ile optik ağların dayanıklılığı büyüyen bir endişedir. Bu büyük bağımlılık haberleşme altyapısını günlük hayatımız için önemli kılmaktadır. Bundan dolayı afet kaynaklı geniş ağ arızaları oluştuğunda tüm toplum (ağ operatörleri ve son kullanıcılar) ağır sonuçlarla karşı karşıya kalmaktadırlar. Bu nedenle afet sonrası haberleşme altyapısının kurtarılması için arayışlar kaçınılmazdır. Her ne kadar bazı araştırmalar geniş çaplı afetlerden kaçınma üzerine odaklanmış olsa da bazen arızalar kaçınılmazdır ve hızlı bir kurtarma gereklidir. Bu çalışmada afet sonrası kurtarma için çoklu tamirci zamanlaması ve ataması problemi incelenmiştir. Afet sonrası oluşan bir arızalar kümesi ve ağ tamiri üzerine uzmanlaşmış bir tamirci kümesi verildiği düşünüldüğünde bu çalışmanın amacı her bir tamirciyi arızalara uygun bir şekilde atamaktır. Öyle kurtarma sürecinde kurtarılan kapasite mümkün olduğu kadar çabuk maksimize edilmiş olsun ve böylelikle daha çok kapasite daha erken kullanılabilir hale gelsin. Bu problem verilen bir arızalar ve tamirciler kümesi için akıllı bir şekilde kurtarma planı oluşturan bir Çoklu Tamirci Afet Kurtarma Algoritması önermesi ile ele alındı. Çalışmanın sonunda önerilen algoritmanın potansiyel faydaları, 24 düğümlü ABD ulusal ağı ve 11 düğümlü COST239 Avrupa ağı topolojileri için elde edilen sayısal sonuçlarla gösterildi. Sayısal sonuçlar, geliştirilen algoritmanın klasik kurtarmaya kıyasla daha kısa sürede daha çok kapasite kurtardığını ve böylelikle Servis Seviyesi Antlaşması ihlallerinden kaynaklı cezaları önemli miktarda azalttığını göstermiştir.

Multi-repairmen problem for disaster recovery of optical networks

Survivability of optical networks is a growing concern because of strong reliance on the internet to accomplish ourdaily activities. This high reliance makes telecommunication infrastructure vital to our daily life. Accordingly, whenlarge network failures occur due to a disaster, the whole community (network operator and end users) incur graveconsequences. Hence, the quest of telecommunication infrastructures recovery after a disaster is indispensable. Eventhough some research focus on how to avoid such large scale failures, sometimes it is inevitable and fast recovery isrequired. In this study, we investigate the problem of multi-repairmen scheduling and assignment for disaster recoveryof optical networks. Given a set of repairmen to repair a set of failures in the network in the aftermath of a disaster, thegoal is to allocate each repairman to a set of failures in an intelligent manner such that we maximize recovered capacityas soon as possible for each recovery schedule thereby recovering more capacity as early as possible. We address theproblem by proposing a Multi-Repairmen Disaster Recovery Algorithm (MRDRA) that provides intelligent recoveryschedule for a given set of failures and repairmen. Finally, we present numerical results that show the potential meritsof our study by considering a 24-node US nation-wide topology and an 11-node COST239 European topology.Numerical results show that our approach can recover more capacity compared to classical scheduling significantly.

___

  • [1] M. Kobayashi, “Experience of Infrastructure Damage Caused by the Great East Japan Earthquake and Countermeasures against Future Disasters”, IEEE Commun. Mag., vol. 52, no. 3, pp. 23-29, Mar. 2014.
  • [2] D. L. Msongaleli, F. Dikbiyik, M. Zukerman, and B Mukherjee, “Disaster-Aware Submarine Fiber-Optic Cable Deployment,” IEEE ONDM, pp.245-250, Pisa, Italy, 11-14 May 2015.
  • [3] mi2gTM, [online]. Available: http://www.mi2g.com/cgi/mi2g/frameset.php?pageid=http%3Awww.mi2g.com/cgi/mi2g/press/220705.php
  • [4] Information Week, [Online]. Available: http://www.informationweek.com/it-downtime-costs-265-billion-inlost-revenue/d/d-id/1097919?
  • [5] J. P. Rohrer and J. P. G. Sterbenz, “Predicting topology survivability using path diversity,” IEEE/IFIP Proc. on RNDM, Budapest-Hungary, pp. 95-101, Oct. 2011.
  • [6] M. F. Habib, M. Tornatore, F. Dikbiyik, and B. Mukherjee, “Disaster Survivability in Optical Communication Networks,” Comput. Commun.,vol . 36, no. 6, pp. 630-644, Mar. 2013.
  • [7] D. P. Juniora,and M. C. Penna, “A new algorithm for dimensioning resilient optical networks for shared-mesh protection against multiple link failures,” Optical Switching and Netw., vol. 13, pp. 158172, Apr. 2014.
  • [8] K. Kumar, and A. K. Garg, “A survey on protection and restoration methods in Optical Networks ,” Int. J. of Enhanced Research in Science Techn. and Eng., vol. 3, no. 5, pp. 84-89, May 2014.
  • [9] Y. Xuan, Y. Shen, N. P. Nguyen, and My T. Thai, “Efficient Multi-Link Failure Localization Schemes in All-Optical Networks,” IEEE Trans. On Commun., vol. 61, no. 3, pp.1144-1151, Mar. 2013.
  • [10] M. Khair, J. Zheng, and H. T. Mouftah “Distributed Multi-Failure Localization Protocol for All-Optical Networks” IEEE ONDM, Braunschweig, Germany, pp.1-6, 18-20 Feb. 2009.
  • [11] H. Yan, R. Wang, Q. Mao, D. Wu, “A fast multi-fault localization mechanism for multi-domain all-optical networks,” Proc. Adv. Comp. Theory and Eng. (ICACTE), vol.5, no., pp. 158-162, 20-22 Aug. 2010.
  • [12] K. T. Morrison, “Rapidly recovering from the catastrophic loss of a major telecommunications office,” IEEE Commun. Mag., vol. 49, no. 1, pp. 28-35, Jan. 2011.
  • [13] J. Wang, C. Qiao, and H. Yu, “On progressive network recovery after a major disruption,” Proc. IEEE INFOCOM, Shanghai, China, Apr. 2011, pp. 1925-1933.
  • [14] K. Al Sabeh, M. Tornatore, and F. Dikbiyik, “Progressive network recovery in optical core networks,” IEEE Proc. on RNDM, Munich, Germany, pp. 106-111, Oct. 2015.
  • [15] C. Ma, J. Zhang, Y. Zhao, M.F. Habib, S. S. Savas, and B. Mukherjee, “Traveling repairman problem for optical network recovery to restore virtual networks after a disaster [invited],” IEEE. Opt. Commun. Netw, vol.7, no.11, pp.B81-B92, Nov. 2015.
  • [16] C. Ma, J. Zhang, Y. Zhao, and M. F. Habib, “Scheme for optical network recovery schedule to restore virtual networks after a disaster,” Proc. IEEE/OSA Optical Fiber Comm., Los Angeles, CA, Mar. 2015
  • [17] H. Yu and C. Yang, “Partial network recovery to maximize traffic demand,” IEEE Comm. Lett., vol. 15, no. 12, pp. 1388-1390, Dec. 2011.
  • [18] R. Andonov, and S. Rajopadhye, “Knapsack on VLSI: From algorithm to optimal circuit,” IEEE Trans. on Parallel and Distributed Systems, vol.8, no.6, pp.545-561, Jun 1997.
  • [19] L. Ken-Li, D. Guang-Ming and L. Qing-Hua, “A genetic algorithm for the unbounded knapsack problem,” Int. Conf. in Machine Learning and Cybernetics, vol.3, no., pp.1586-1590, 2-5 Nov. 2003.
  • [20] M. Yanjun, L. Jiandong, L. Qin, and C. Rui, “Group Based Interference Alignment,” IEEE. Commun. Letters, vol.15, no.4, pp.383-385, April 2011.
  • [21] X.Wang, X. Jiang, and A. Pattavina, “Assessing Network Vulnerability Under Probabilistic Region Failure Model,” Proc. IEEE HPSR, Cartagena, Spain, pp. 164-170, July 2011.