Mechanism of Tunable Band Gap of Halide Cubic Perovskite CsPbBr3−xIx

Mechanism of Tunable Band Gap of Halide Cubic Perovskite CsPbBr3−xIx

Perovskites are organic-inorganic compounds with a crystal structure that revolutionize many optoelectronic applications, especially solar cells. The CsPbBr3−xIx, a perovskite, has garnered significant attention due to its tunable band gap and excellent photovoltaic properties. In this theoretical study, the structural, electronic, and optical properties of CsPbBr3−xIx are investigated through density functional theory calculations. The calculations reveal that the substitution of Br with I leads to a significant reduction in the band gap of CsPbBr3−xIx, resulting in improved light absorption properties. The obtained data show that the coexistence of Br and I ions in the structure creates an energy level similar to the shallow energy levels caused by doping at the R symmetry point in the band structure.

___

  • [1] Y. Wang, X. Liu, T. Zhang, X. Wang, M. Kan, J. Shi, Y. Zhao, “The role of dimethylammonium iodide in cspbi3 perovskite fabrication: Additive or dopant?,” Angewandte Chemie International Edition, vol. 58, no. 46, pp. 16691-16696, 2019.
  • [2] S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Advanced Materials, vol. 28, no. 32, pp. 6804-6834, 2016.
  • [3] W. Xiang W. Tress, “Review on recent progress of all-inorganic metal halide perovskites and solar cells,” Advanced Materials, vol. 31, no. 44, pp. 1902851, 2019.
  • [4] G. E. Eperon, C. E. Beck, H. J. Snaith, “Cation exchange for thin film lead iodide perovskite interconversion,” Materials Horizons, vol. 3, pp. 63-71, 2016.
  • [5] F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D. M. Evans, M. A. Carpenter, P. D. Bristowe, A. K. Cheetham, “The synthesis, structure and electronic properties of a lead-free hybrid inorganic-organic double perovskite (MA)2KBiCl6 (MA = methylammonium),” Materials Horizons, vol. 3, pp. 328-332, 2016.
  • [6] NREL, “National renewable energy laboratory (nrel), best research-cell efficiency chart,” 2023.
  • [7] J. Liang, J. Liu, Z. Jin, “All-inorganic halide perovskites for optoelectronics: Progress and prospects,” Solar RRL, vol. 1, no. 10, pp. 1700086, 2017.
  • [8] Y. Wang H. Sun, “All-inorganic metal halide perovskite nanostructures: From photophysics to light-emitting applications,” Small Methods, vol. 2, no. 1, pp. 1700252, 2018.
  • [9] Y. Zhao, I. Yavuz, M. Wang, M. H. Weber, M. Xu, J.-H. Lee, S. Tan, T. Huang, D. Meng, R. Wang, J. Xue, S.-J. Lee, S.-H. Bae, A. Zhang, S.-G. Choi, Y. Yin,J. Liu, T.-H. Han, Y. Shi, H. Ma, W. Yang, Q. Xing, Y. Zhou, P. Shi, S. Wang, E. Zhang, J. Bian, X. Pan, N.-G. Park, J.-W. Lee, Y. Yang, “Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations,” Nature Materials, vol. 21, pp. 1396-1402, Dec 2022.
  • [10] N. Isleyen, A. Corcor, S. Cakirefe, N. Ormanli, E. N. Kanat, I. Yavuz, “Accelerated discovery of defect tolerant organo-halide perovskites,” Journal of Materials Chemistry C, vol. 10, pp. 18385-18392, 2022.
  • [11] J. Kruszyńska, F. Sadegh, M. J. Patel, E. Akman, P. Yadav, M. M. Tavakoli, S. K. Gupta, P. N. Gajjar, S. Akin, D. Prochowicz, “Effect of 1,3- disubstituted urea derivatives as additives on the efficiency and stability of perovskite solar cells,” ACS Applied Energy Materials, vol. 5, pp. 13617- 13626, 2022.
  • [12] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, H. G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Advanced Energy Materials, vol. 5, no. 15, pp. 1500477, 2015.
  • [13] J. K. Nam, S. U. Chai, W. Cha, Y. J. Choi, W. Kim, M. S. Jung, J. Kwon, D. Kim, J. H. Park, “Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells,” Nano Letters, vol. 17, pp. 2028-2033, Mar 2017.
  • [14] Z. Yao, Z. Jin, X. Zhang, Q. Wang, H. Zhang, Z. Xu, L. Ding, S. F. Liu, “Pseudohalide (SCN- )-doped CsPbI3 for high-performance solar cells,” Journal of Materials Chemistry C, vol. 7, pp. 13736-13742, 2019.
  • [15] Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. W. Chan, F. Yan, “Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity,” Nature Communications, vol. 7, p. 11105, Apr 2016.
  • [16] Z. Xiao, W. Meng, B. Saparov, H.-S. Duan, C. Wang, C. Feng, W. Liao, W. Ke, D. Zhao, J. Wang, D. B. Mitzi, Y. Yan, “Photovoltaic properties of twodimensional (CH3NH3)2Pb(SCN)2I2 perovskite: A combined experimental and density functional theory study,” The Journal of Physical Chemistry Letters, vol. 7, pp. 1213-1218, Apr 2016.
  • [17] G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” Journal of Materials Chemistry A, vol. 2, pp. 705-710, 2014.
  • [18] T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, “Bication lead iodide 2d perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Science Advances, vol. 3, no. 9, pp. e1700841, 2017.
  • [19] N. Li, Z. Zhu, J. Li, A. K.-Y. Jen, L. Wang, “Inorganic CsPb1-xSnxIBr2 for efficient wide-band gap perovskite solar cells,” Advanced Energy Materials, vol. 8, no. 22, pp. 1800525, 2018.
  • [20] S. Dastidar, S. Li, S. Y. Smolin, J. B. Baxter, A. T. Fafarman, “Slow electronhole recombination in lead iodide perovskites does not require a molecular dipole,” ACS Energy Letters, vol. 2, pp. 2239-2244, Oct 2017.
  • [21] Q. Jing, M. Zhang, X. Huang, X. Ren, P. Wang, Z. Lu, “Surface passivation of mixed-halide perovskite CsPb(BrxI1-x)3 nanocrystals by selective etching for improved stability,” Nanoscale, vol. 9, pp. 7391-7396, 2017.
  • [22] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut”, Nano Letters, vol. 15 (6), 3692-3696, 2015.
  • [23] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”, Energy & Environmental Science, vol. 7, pp. 982-988, 2014.
  • [24] K. Chen, Q. Zhong, W. Chen, B. Sang, Y. Wang, T. Yang, Y. Liu, Y. Zhang, H. Zhang, “Short-chain ligand-passivated stable CsPbI3 quantum dot for allinorganic perovskite solar cells,” Advanced Functional Materials, vol. 29, no. 24, pp. 1900991, 2019.
  • [25] Goldschmidt, V.M., “Die Gesetze der Krystallochemie,” Naturwissenschaften, 14, 477-485, 1926.
  • [26] S. Mariotti, O. S. Hutter, L. J. Phillips, P. J. Yates, B. Kundu, K. Durose, “Stability and performance of CsPbI2Br thin films and solar cell devices,” ACS Applied Materials & Interfaces, vol. 10, pp. 3750-3760, Jan 2018.
  • [27] E. Akman, T. Ozturk, W. Xiang, F. Sadegh, D. Prochowicz, M. M. Tavakoli, P. Yadav, M. Yilmaz, S. Akin, “The effect of B-site doping in all-inorganic CsPbIxBr3−x absorbers on the performance and stability of perovskite photovoltaics,” Energy & Environmental Science., vol. 16, pp. 372-403, 2023.
  • [28] T. Ozturk, E. Akman, A. E. Shalan, S. Akin, “Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%,” Nano Energy, Volume 87, pp. 106157, 2021.
  • [29] Z. Lin, J. Lei, P. Wang, X. Zhang, L. Xu, M. Chen, Y. Kang, G. Wei, “Density functional study of structural, electronic and optical properties of bromine-doped CsPbI3 with the tetragonal symmetry,” Journal of Alloys and Compounds, pp. 162165, vol 892, 2022.
  • [30] P. M. Maleka, R. S. Dima, O. M. Ntwaeaborwa, R. R. Maphanga, “Density functional theory study of Br doped CsPbI3 perovskite for photovoltaic and optoelectronic applications,” Physica Scripta, vol. 98, no. 4, pp. 045505, 2023.
  • [31] Guan Z, Wu Y, Wang P, Zhang Q, Wang Z, Zheng Z, Liu Y, Dai Y, Whangbo M-H, Huang B. “Perovskite photocatalyst CsPbBr3-xIx with a bandgap funnel structure for H2 evolution under visible light,” Applied Catalysis B: Environmental, vol. 245, pp. 522-527, 2019.
  • [32] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. Payne, “First principles methods using CASTEP,” Z. Kristall., vol. 220, pp. 567-570, 2005.
  • [33] E. McNellis, J. Meyer, K. Reuter, “Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions,” Physical Review B, vol. 80, pp. 205414, 2009.
  • [34] A. Tkatchenko M. Scheffler, “Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data,” Physical Review Letters, vol. 102, pp. 073005, 2009.
  • [35] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, pp. 3865-3868, 1996.
  • [36] H. J. Monkhorst J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, pp. 5188- 5192, 1976.
  • [37] W. Tang, E. Sanville, G. Henkelman, “A grid-based bader analysis algorithm without lattice bias,” Journal of Physics: Condensed Matter, vol. 21, pp. 084204, jan 2009.
  • [38] M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, I. Ahmad, “Structural, electronic and optical properties of cspbx3 (x=cl, br, i) for energy storage and hybrid solar cell applications,” Journal of Alloys and Compounds, vol. 705, pp. 828–839, 2017.
  • [39] P. Cottingham R. L. Brutchey, “On the crystal structure of colloidally prepared cspbbr3 quantum dots,” Chemical Communications, vol. 52, pp. 5246- 5249, 2016.
  • [40] D. Trots S. Myagkota, “Hightemperature structural evolution of caesium and rubidium triiodoplumbates,” Journal of Physics and Chemistry of Solids, vol. 69, no. 10, pp. 2520–2526, 2008.
  • [41] K. Heidrich, W. Schäfer, M. Schreiber, J. Söchtig, G. Trendel, J. Treusch, T. Grandke, H. J. Stolz, “Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPbCl3 and CsPbBr3,” Physical Review B, vol. 24, pp. 5642-5649, Nov 1981.
  • [42] Y. Yang, C. Hou, T.-X. Liang, “Energetic and electronic properties of cspbbr3 surfaces: a first-principles study,” Physical Chemistry Chemical Physics, vol. 23, pp. 7145-7152, 2021.
  • [43] H. M. Ghaithan, Z. A. Alahmed, S. M. H. Qaid, and A. S. Aldwayyan, “Structural, electronic, optical properties of CsPb(Br1-xClx)3 perovskite: First-principles study with PBE-GGA and mbj-GGA methods,” Materials, vol. 13, no. 21, 2020.
  • [44] Maji, P., Sadhukhan, P. Das, S. “Optoelectronic properties of facile synthesized orthorhombic cesium lead bromide (CsPbBr3),” Journal of Materials Science: Materials in Electronics, 31(19), pp. 17100-17109, 2020.
  • [45] M. R. Filip, G. E. Eperon, H. J. Snaith, F. Giustino, “Steric engineering of metal-halide perovskites with tunable optical band gaps,” Nature Communications, vol. 5, pp. 5757, Dec 2014. [46] C. H. Ng, T. S. Ripolles, K. Hamada, S. H. Teo, H. N. Lim, J. Bisquert, S. Hayase, “Tunable open circuit voltage by engineering inorganic cesium lead bromide/iodide perovskite solar cells,” Scientific Reports, vol. 8, pp. 2482, Feb 2018.