Enerji verimli ve düşük maliyetli sensör ağlarının ISM bandı FSK alıcı vericiyle tasarlanması

Güvenilir kablosuz link ve uzun batarya kullanım süresi, taşınabilir ve açık alanda kullanılan sensörlerle donatılmış elektronik devrelerde vazgeçilmez bir unsurdur. Bu amaçla, tasarımda kullanılan görev periyodu yöntemi, çok düşük güç tüketen elektronik devre tasarımı, dinamik güç yönetimi, kablosuz ağ mimarileri ve ortam erişim kontrolü konuları detaylı olarak açıklanmıştır. Bu çalışmada, çok düşük güç tüketen kablosuz sensör ağı, 115.2 kbps 3 dakikada bir kez 5 bayt veri paketi gönderen, 3V (2x1.5V) 1000 mAh pille teorik olarak 131.25 yıla kadar pil ömrüne sahip, 4cmx4cm boyutlu hafif sensörler aracılığıyla tasarlanmıştır. Yazılım tabanlı düşük güç tüketen uyanma yöntemiyle, 868 ve 915 MHz programlanabilen 115.2 kbps endüstriyel bilimsel medikal bandı frekans kaydırmalı kodlama (FSK) RF alıcı verici, düşük maliyetli lisanssız sensör ağlarında, açık alan ve kapalı ortam uygulamalarında 100m ve 25m iletişim mesafesi sağlayacak şekilde Geri Ters F Anten kullanılarak tasarlanmıştır. Sensör, 868 MHz’de 3V batarya ile 0.5 uA, 2.5 mA, 0.8 uA, 14.6 mA ve 25 mA uyku, ölçme, ağdaki trafiği algılama, veri alma ve veri gönderme modunda akım gerektirmektedir. Sensörler -40-85 °C arasında sıcaklık artış ya da azalışından dolayı oluşan değişimleri tolere edip veri iletişiminde sorun olmadan çalışacak şekilde tasarlanmıştır.

Design of low cost and energy efficient sensor networks with ISM band FSK transceiver

Safe wireless link and long battery life are indispensable feature for a portable and outdoor used device with build-in sensors. For this purpose, duty cycling, ultra-low power electronics design, dynamic power management, wireless network architecture and medium access control concepts in the design are explained in detailed.  In this work, an ultra-low power wireless sensor network is designed with 4cmx4cm size and light weight nodes sending once every three minutes 115.2 kbps 5 byte package that have up to 131.25 year battery life time in theory with 3V (2x1.5V) 1000mAh battery. 868 and 915 MHz programmable 115.2 kbps ISM band FSK RF transceiver with a low power wake-up scheme is utilized for low cost unlicensed-used wireless sensor networks designed with Back Inverted F Antennas with 100m communication range for outdoor applications and 25m for indoor applications. Sensor node requires 0.5 uA, 2.5 mA, 0.8 uA, 14.6 mA and 25mA during sleep, measurement, sniff, receive and transmit mode respectively @ 868 MHz with 3V battery. The sensors has temperature compensation feature with -40-85 °C working range. 

___

  • M. Magno, S. Marinkovic, B. Srbinovski, and E. M. Popovici, “Wake-up radio receiver based power minimization techniques for wireless sensor networks: A review,” Microelectronics J., vol. 45, no. 12, pp. 1627–1633, 2014.
  • N. Kumari, N. Patel, S. Anand, and P. P. Bhattacharya, “Designing Low Power Wireless Sensor Networks : A Brief Survey,” pp. 4447–4456, 2013.
  • C. C. Enz, A. El-Hoiydi, J. D. Decotignie, and V. Peiris, “WiseNET: An ultralow-power wireless sensor network solution,” Computer (Long. Beach. Calif)., vol. 37, no. 8, pp. 62–70, 2004.
  • J. M. Rabaey, J. Ammer, T. Karalar, B. Otis, M. Sheets, and T. Tuan, “PicoRadios for wireless sensor networks: the next challenge in ultra-low power design,” 2002 IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pap. (Cat. No.02CH37315), vol. 1, pp. 200–201, 2002.
  • S. Oshima, K. Matsunaga, and T. Kondo, “Ultralow-power Sensor Node with Nanowatt Wireless Circuit Technology.”
  • EnOcean, “Scavenger Transceiver Module STM 300 STM 300C,” EnOcean Appl. Notes, no. November, 2012.
  • P. Cynetics, R. City, S. D. Governor, E. Development, S. Dakota, F. Fund, E. Development, and S. Dakota, “A Power-Efficient BPSK Communications Systems for Small Satellites.”
  • P. Note, “ERC Recommendation 70-03,” no. February, 2014.
  • C. Hu, Low Power Design Methodologies. Kluwer Academic Publishers.
  • J. Larminie and J. Lowry, Electric Vehicle Technology Explained. Wiley, 2012.
  • M. Jongerden and B. Haverkort, “Battery modeling,” p. 18, 2008.
  • All About Batteries, “Battery energy - What battery provides more?,” AllAbout Batter., pp. 1–3, 2015.
  • P. D. Bradley, “An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices,” 2006 IEEE Biomed. Circuits Syst. Conf., pp. 158–161, 2006.
  • F. Almajadub and K. Elleithy, “Performance Advancement of Wireless Sensor Networks using Low Power Techniques and Efficient Placement of Nodes.”
  • J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System architecture directions for networked sensors,” ACM SIGOPS Oper. Syst. Rev., vol. 34, no. 5, pp. 93–104, 2000.
  • U. M. Colesanti, S. Santini, and A. Vitaletti, “DISSense: An Adaptive Ultralow-power Communication Protocol for Wireless Sensor Networks,” Proc. 7th IEEE Int. Conf. Distrib. Comput. Sens. Syst., pp. 1–10, 2011.
  • L. Antennas, E. Section, I. Loop, R. Characteristics, and S. Loop, “L12_Loop,” pp. 1–20, 2014.
  • “Antenna Selection Guide For the RF12 ISM Band FSK Transceiver,” pp. 1–37.
  • G. Terrasson, R. Briand, S. Basrour, V. Dupé, and O. Arrijuria, “Energy Model for the Design of Ultra-Low Power Nodes for Wireless Sensor Networks,” Procedia Chem., vol. 1, no. 1, pp. 1195–1198, 2009.
  • S. Labs, “Battery Life Estimator & Calc_BatteryLifeCalculator_v1.” .