Determination of Coverage Oscillation for Inclined Communication Satellite

Determination of Coverage Oscillation for Inclined Communication Satellite

The communication engineers need to evaluate footprint movement to deploy a ground station. Geostationary communication satellite’s inclination angle causes the movement of a satellite footprint. The calculation of the inclination angle requires complex astronomical knowledge and mathematical calculations. On the other hand, a satellite communication engineer does not need a very accurate inclination angle value to design a ground station for required service availability. We propose a practical method called trigonometric curve fitting for the inclination to solve the problem. The past and the future value of inclination can be evaluated by using the curve-fitting method. It is a simplified practical method and does not need advanced orbital dynamics knowledge. The orbit geometry and evaluated inclination angle are used for estimation of a coverage area movement. A satellite communication engineer can evaluate coverage area oscillation quickly and design a better link for an inclined orbit satellite by using the proposed method. We have evaluated the inclination angle of the communication satellite Sat-1 with the proposed method. Sat-1 spot beam movements and wide beam coverage area movements are estimated to obtain EIRP and G/T fluctuation for link budget purposes. The proposed method provides the results that are consistent with the results of measurements and the results of satellite operators’ professional tools.

___

  • E. M. Soop, “Introduction to Geostationary Orbits”, ESA, : pp. 232-235, 1983.
  • B. Gurol, , S. Gulgonul, , G. Gokay, , A. Okan, , I.Oz., “Optical monitoring of inter satellite distance between Turksat-2A And Turksat-3A. In Proceedings of 5th International Conference on Recent Advances in Space Technologies-RAST2011, pp.337-340, 2011.
  • S. Hu-Li, H Yan-Ben, M. Li-Hua, P.Jun, Y. Zhi- Qiang and J. Hai-Fu, “Beyond life-cycle utilization of geostationary communication satellites in end-of-life”, Satellite Communications, Nazzareno Diodato(Ed), Intech, ISBN: 978-953-307-135-0, pp.323-365, 2010.
  • L. Ma, “The Benefits of Inclined-Orbit Operations for Geostationary Orbit Communication Satellites”, Artificial Satellite, Vol.46, DOI: 10.2478/v10018-011-0007-1, 2011 .
  • I. Oz, “Evaluation of station location for orbit determination of geo satellites at different slots”, 8th International Conference on Recent Advances in Space Technologies (RAST), pp.375-379, 2017.
  • Z. Chang-Yin, Z. Ming-Jiang, W. Hong-Bo, X. Jian-Ning, Z. Ting-Lei, Z. Wei, “Analysis on the long-term dynamical evolution of the inclined geosynchronous orbits in the Chinese BeiDou navigation system, Advances in Space Research, 56 pp. 377–387, 2015.
  • Y. Han, L. Ma, Q. Qiao., Z.Yin, H.Shi, G. Ai, “Functions of retired GEO communication satellites in improving the PDOP value of CAPS”, Sci China Ser G-Phys Mech Astron, Vol. 52, No. 3, pp.423-433, 2009.
  • G.Dai, , X.Chen, , M.Zuo, , L. Peng, , M. Wang, Z.Song, “The Influence of Orbital Element Error on Satellite Coverage Calculation”. International Journal of Aerospace Engineering, 2018.
  • S. Y. Fu, Z. R. Wang, , H. L. Shi, , L. H. Ma, “The application of decommissioned GEO satellites to CAPS”, In IOP Conference Series: Materials Science and Engineering,Vol. 372, No. 1, pp. 012033, IOP Publishing, 2018.
  • C.Sun, H. Jiang, J. Zhang, Y. Tao, , B. Li, C. Zhao, “Modeling and Calibrating the Ground-Surface Beam Pointing of GEO Satellite”, IEEE Access, 7, 121897-121906, 2019.
  • S.Lee, “GEO Satellite Collision Avoidance Maneuver Strategy Against Inclied GSO Satellite”, In SpaceOps :1294441, 2012.
  • A. F. Yagli, M. Gokten, , S. Gulgonul, , I. Oz, O. Dalbay,“Regional positioning system using Turksat satellites”, In 6th International Conference on Recent Advances in Space Technologies RAST:2013: pp.237-240, 2013.
  • A. E. Emam, J. Victor, , M. A. Elghany, “Performance Assessment of GSO Satellite before and after Enhancing Pointing Effect”, World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 12: pp. 1434-1440, 2015.
  • A. E. Emam, , M. A. Elghany, , “Collocation Assessment between GEO and GSO Satellites”, International Journal of Aerospace and Mechanical Engineering,: 9(12), pp. 2124-2132, 2015.