Analysis of Silicon Solar Cell Device Parameters using PC1D

Analysis of Silicon Solar Cell Device Parameters using PC1D

Perceiving the role of each layer relevant to the parameters in a silicon solar cell is important for engineering of solar structures for high efficiencies. PC1D simulation of silicon solar cells were carried out in this work to evaluate the performance parameters of each layer and outcomes were analyzed considering their effects in final cell. Absorber layer, emitter layer, antireflection coating layer and back surface field layer were studied especially in terms of doping levels, thicknesses, absorbance behavior and final cell performance. The short circuit current density (Jsc) is found to be directly proportional to the absorber layer thickness until the thickness of 160µm whereas the open circuit voltage (Voc) is inversely proportional for the range of 30 to 280µm. The device with 2x1020 cm-3 doping concentration of emitter was more efficient for homogenous emitter solar cells. The thickness of emitter has degrading effects on the efficiency of the device, the device with 0.1µm emitter thickness is found to have the highest efficiency. Doping concentration of back surface field had considerable effect on Voc of the device for the range of 3x1017 to 3x1018 cm-3. Triple layer antireflection coating improved the short circuit current density by a ratio of 50.8% and overall efficiency by a ratio of 51.07% comparing to the those of the cells without antireflection coating. Measured data of a fabricated high efficiency solar cell was in conformity with the results of the simulation. According the performed studies and achieved results, understanding and estimating the effects of these primary parameters on solar cell performance is beneficial for designing a high efficiency solar cell structure.

___

  • [1] Basic Photovoltaic Principles and Methods, Solar Information Module (1982), SERI/SP-290-1448.
  • [2] S. Philipps, Photovoltaics Report, Fraunhofer ISE and Werner Warmuth, PSE AG, https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/PhotovoltaicsReport.pdf
  • [3] M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger and A. W. H. Ho-Baillie, “Solar Cell Efficiency Tables (version 50)”, Prog. Photovoltaics, vol. 25, pp. 668- 676, 2017.
  • [4] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy, vol. 2, no. 5, 2017.
  • [5] J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett and S. W. Glunz “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics, vol. 7, no. 5, pp.1171–1175,2017.
  • [6] J. Hofstetter, C. del Cafiizo, S. Ponce-Alcantara and A. Luque, “Optimisation of SiNx:H anti-reflection coatings for silicon solar cells”, Spanish Conference on Electron Devices, pp.131-134,2007.
  • [7] K. Islam, A. Alnuaimi, H. Ally and A. Nayfeh, “ITO, Si3N4 and ZnO:Al Simulation of Different Anti-reflection Coatings (ARC) for Thin Film a-Si:H Solar Cells,” 2013 European Modelling Symposium, Manchester, pp. 673-676, 2013.
  • [8] D. A. Clugston and P. A. Basore, “PC1D Version 5- 32-Bit Solar Cell Modeling on Personal Computers”, 26th IEEE Photovoltaics Specialist Conference, Anaheim California, pp. 207–210, 1997.
  • [9] Synopsis, “Synopsys TCAD Now Offers Atomic-level Accuracy.” Online Available: https://news.synopsys.com/index.php?s=20295&item=122584. (Accessed: 23-Nov-2018).
  • [10] B. Liu, S. Zhong, J. Liu, Y. Xia and C. Li, “Silicon nitride film by inline PECVD for black silicon solar cells,” International Journal of Photoenergy, vol. 2012, pp. 2–7, 2012.
  • [11] C.-T. Sah, K.A. Yamakawa, R. Lutwack, “Effects of Thickness on Silicon Solar Cell Efficiency”, IEEE Transactions on Electron Devices, vol. 29, no. 5, 1982.
  • [12] A. Mandong, “Design and Simulation of Single, Double, and Multi-Layer Antireflection Coating for Crystalline Silicon Solar Cell”, Master Thesis, Karadeniz Technical University, Trabzon,Turkey,2019.
  • [13] M. Wolf, “The Influence of Heavy Doping Effects on Silicon Solar Cell Performance”, Solar Cells, vol. 17, pp. 53-63, 2018.
  • [14] R.R. King, K.W. Mitchell and J.M. Gee, “Back Surface Cell Structures for Reducing Recombination in CZ Silicon Solar Cells”, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), Waikoloa, USA, 1994.