Yarı-Heusler LiScPb yarıiletkeni üzerine bir ilk ilkesel araştırma

Bir ilk-ilkesel çalışması olan yarı-Heusler (HH) LiScPb yarıiletkeninin yapısal, elastik, elektronik, titreşimsel, termodinamik ve optik özellikleri yoğunluk fonksiyoneli teorisine dayanan düzlem dalgapseudo potansiyel tekniği kullanılarak rapor edilmiştir. Elastik özellikler ikinci mertebeden elastik sabitleri kullanılarak sunulmuştur. Elektronik bant yapısı hesaplamaları kısmi durum yoğunlukları ile elde edilmiştir. Yarı-Heusler (HH) LiScPb yarıiletkeninin optiksel özellikleri araştırılmıştır ve bu çalışmada kırılma indisi, sönüm katsayısı, yansıma ve kayıp fonksiyonu dielektrik fonksiyonları kullanılarak belirlenmiştir. Yarı-Heusler (HH) LiScPb yarıiletkeninin kararlılığını değerlendirmek için fonon hesaplamaları dikkate alınmıştır. Ayrıca, sistemin serbest enerjisi, entropisi ve ısı sıcaklığı artan sıcaklık değerleri altında araştırılmıştır.

A first-principles ıinvestigation on a Half-Heusler liscpb semiconductor

A first-principles study of structural, elastic, electronic, vibrational, thermodynamic and optical propertiesof a half-Heusler (HH) LiScPb semiconductor has been reported using the plane-wave pseudo-potentialtechnique based on density functional theory (DFT). The elastic properties are represented using secondorderelastic constants. The electronic band structure calculations are obtained with partial density of states.Optical properties of HH-LiScPb semiconductor are also investigated and related parameters such asrefraction index, extinction coefficient, reflectivity and loss function are determined using dielectricfunctions in this study. Phonon calculations have been taken into account to evaluate the stability of halfHeusler(HH) LiScPb semiconductor. Also, the system's free energy, entropy and heat capacity wereinvestigated under increasing temperature values.

___

  • F. Casper, T. Graf, S. Chadov, B. Balke and C. Felser, “Half-Heusler compounds: novel materials for energy and spintronic applications,” Semiconductor Science and Technology, vol. 27, no. 6, pp. 063001, 2012.
  • N. Shutoh and S. Sakurada, “Thermoelectric properties of the TiX(Zr0.5Hf0.5)1−XNiSn halfHeusler compounds,” Journal of Alloys and Compounds, vol. 389, pp. 204-208, 2005.
  • H. Muta, T. Kanemitsu, K. Kurosaki, S. Yamanaka, “High-temperature thermoelectric properties of Nb-doped MNiSn (M= Ti, Zr) half-Heusler compound,” Journal of Alloys and Compounds, vol. 469, pp. 50-55, 2009.
  • W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon and T.M. Tritt, “Recent Advances in Nanostructured Thermoelectric HalfHeusler Compounds”, Nanomaterials, vol. 2, no. 4, pp. 379-412, 2012.
  • D. Kieven and R. Klenk, S. Naghavi, C. Felser, and T. Gruhn, “I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations,” Physical Review B, vol. 81, pp. 075208, 2010.
  • D. Xiao, Y. Yao, W. Feng, J. Wen, W. Zhu, X-Q. Chen, G.M. Stocks, and Z. Zhang, “Half-Heusler Compounds as a New Class of Three-Dimensional Topological Insulators,” Physical Review Letters, vol. 105, pp. 096404, 2010.
  • T. Gruhn, “Comparative ab initio study of half-Heusler compounds for optoelectronic applications,” Physical Review B, vol. 82, pp. 125210, 2010.
  • H. Mehnane, B. Bekkouche, S. Kacimi, A. Hallouche, M. Djermouni, “First-principles study of new half Heusler for optoelectronic applications,” Superlattices and Microstructures vol. 51, pp. 772-784, 2012.
  • S. Kacimi, H. Mehnane, A. Zaoui, “I–II–V and I–III–IV half-Heusler compounds for optoelectronic applications: Comparative ab initio study,” Journal of Alloys and Compounds, vol. 587, pp. 451-458, 2014.
  • G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical Review B, vol. 47, pp. 558, 1993.
  • G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium,” Physical Review B, vol. 49, pp. 14251, 1994.
  • G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6 no. 1, pp. 15-50, 1996.
  • G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, vol. 54, pp. 11169, 1996.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, vol. 77, pp. 3865, 1996.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple [Erratum: Phys. Rev. Lett. 77, 3865 (1996)],” Physical Review Letters, vol. 78, pp. 1396, 1997.
  • H.C. Kandpal, C. Felser, R. Seshadri, “Covalent bonding and the nature of band gaps in some half-Heusler compounds,” Journal of Physics D: Applied Physics, vol. 39, no. 5, pp. 776-785, 2006.
  • K. Momma and F. Izumi, “VESTA: a threedimensional visualization system for electronic and structural analysis,” Journal of Applied Crysallography, vol. 41, pp. 653- 658, 2008.
  • A. Roy, “First-Principles Study of Electromechanical and Polar Properties in Perovskite Oxides and Half-Heusler Semiconductors,” PhD Thesis, New Brunswick, New Jersey, 2011.
  • F.D. Murnaghan, “The Compressibility of Media under Extreme Pressures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 30, pp. 244-247, 1944.
  • J.F. Nye, “Physical Properties of Crystals: Their Representation by Tensors and Matrices,” Clarendon Press, Oxford, 1985.
  • Y.L. Page and P. Saxe, “Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress,” Physical Review B, vol. 65, pp. 104104, 2002.
  • M. Born and K. Huang, “Dynamical Theory of Crystal Lattices,” Clarendon Press, Oxford, 1956.
  • Y. Mogulkoc, Y.O. Ciftci, K. Colakoglu, E. Deligoz, “The structural, electronic, elastic, vibration and thermodynamic properties of GdMg,” Solid State Sciences, vol. 16, pp. 168-174, 2013.
  • Y. Mogulkoc, Y.O. Ciftci, K. Colakoglu, “Structural, elastic, electronic and thermodynamic properties of Nd2Te via first principle calculations,” Journal of Optoelectronics and Advanced Materials, vol. 13, no. 8, pp. 946 – 951, 2011.
  • W.A. Harrison, “Electronic Structure and Properties of Solids,” Dover, New York, 1989.
  • Y. Mogulkoc, Y.O. Ciftci, M. Kabak, K. Colakoglu, “Ab initio study of the structural, elastic, thermodynamic, electronic and vibration properties of TbMg intermetallic compound,” Superlattices and Microstructures, vol.71, pp. 46–61, 2014.
  • Y. Shen and Z. Zhou, “Structural, electronic, and optical properties of ferroelectric KTa1/2Nb1/2O3KTa1/2Nb1/2O3 solid solutions,” Journal of Applied Physics, vol. 103, pp. 074113, 2008.
  • M. Dadsetani and A. Pourghazi, “Optical properties of strontium monochalcogenides from first principles,” Physical Review B, vol. 73, pp. 195102, 2006.
  • A. Togo, I. Tanaka, “First principles phonon calculations in materials science,” Scripta Materialia, vol. 108, pp. 1-5, 2015.