Türkiye inşaat sektörünün global karbon ayak izi analizi

Türkiye inşaat sektörünün ekonomik, çevresel, ve sosyal etkilerinin analizi son yıllarda önemini giderek artırmıştır. Özellikle artan inşaat, ulaşım, üretim ve enerji yatırımları Türkiye ve dünya ekonomisine doğrudan ve dolaylı etkiler yapmaktadır. Bu makalede, Türkiye için önemli bir araştırma boşluğunu doldurmak amacıyla Türkiye’deki inşaat sektörünün uluslararası tedarik zincirlerini de kapsayacak bir biçimde ilk, web tabanlı ve küresel karbon ayakizi analizi çıkartılmıştır. Avrupa Komisyonu 7. Çerçeve Araştırma Programınca desteklenen Dünya Girdi-Çıktı Veritabanı’nın ‘World Input-Output Database’ Türkiye inşaat sektörü için ilk kez kullanılacağı bu çalışmada, Türkiye inşaat sektörünün 2000 ile 2009 yılları arasındaki karbon ayakizi etkileri ulusal ve küresel çapta analiz edilmiştir. Türkiye inşaat sektörlerinin bölgesel ve küresel düzlemde çevresel etkileri hesaplamak ve kapsamlı sürdürülebilirlik analizleri yapılmak için bir model geliştirilmiştir. Önerilen modelin benzer versiyonları Amerika Birleşik Devletleri, Avrupa Birliği, Avusturalya, İngiltere ve Japonya gibi birinci dünya ülkelerinde stratejik karar vermede kullanıldığı halde, Türkiye için benzer kapsamlı bir model henüz mevcut değildir. Bu motivasyonla, ‘Küresel Karbon Ayakizi Muhasebe Modeli’ (Global Carbon Footprint Accounting Tool) geliştirilmiş ve inşaat sektörü için kapsamlı bir analiz yapılmıştır. Harvard’lı ünlü ekonomist Wassily Leontief’in ekonomi alanında Nobel Ödülü kazandığı girdi-çıktı analizinin küresel modele dönüştürülerek kullanılacağı bu çalışma, zaman serisi analizi, kapsam bazlı karbon ayak izi modellemesi, üretim-tüketim odaklı, ve küresel etki dağılımı analizi gibi yenilikçi yöntemlerle kullanıcılara tedarik zinciri odaklı analizler yapma imkanı sağlamaktadır. Analiz sonuçlarına inşaat sektöründeki büyümeden dolayi sektörün karbon ayak izi yıllara gore artış göstermiştir. İnşaat sektörünün Kapsam 2 ve 3 karbon salınımları (dolaylı salınımlar) sektörün toplam emisyonlarının ortalama %80’nine karşılık gelmektedir ve sektörün emisyonlarını düşürmek için tedarik zinciri ile beraber değerlendirilmesi gerekmektedir. Araştırma sonucunda geliştirilen küresel modelin başta bakanlıklar olmak üzere, araştırma enstitüleri ve üniversitelerdeki karar verme süreçlerinde yaygın bir biçimde kullanılabilmesi için web-tabanlı bir şekilde internet ortamında da sunulmuştur.

Global carbon footprint analysis of Turkish construction industry

The analysis of economic, social, and environmental impacts (termed as triple-bottom-line) of Turkish sectors has become a topic of considerable interest. Especially, there are significant regional and global effects of increasing construction, transportation, manufacturing, and energy investments in Turkey. In this study, with the aim of filling an important research gap, Turkish construction sector, including its supply chain, is analyzed using a web-based global carbon footprint analysis for the first time. In this study, using the World Input-Output Database, which is funded by the European Commission under the 7th Research Programme for the Turkish Construction industry for the first time, carbon footprint of the Turkish construction sector is analyzed both at national and global scales in between 2000 and 2009. A comprehensive sustainability analysis of Turkish construction sector has been conducted considering regional and global environmental impacts. Although similar modeling approaches have been used in various developed nations including United States of America, European Union, Australia, Japan, and United Kingdom, for strategic decision making, there is no such holistic sustainability assessment platform for Turkish economy. With this motivation, this study aims to develop a first, web-based global sustainability assessment platform and used for the Turkish construction industry. Using the extended version of Wassily Leontief’s (a well-known economist from Harvard University) Nobel awarded inputoutput analysis as a global multiregional input-output model, the model allows users to conduct novel analyses such as time-series, scope-based carbon footprint, production-consumption based, and global impact distribution analyses. According to analysis results, because carbon emissions due to growth in Turkish construction sector are greater the emission reduction stemming from efficiency increases in between 2000-2009, the total carbon emissions of the sector increased in between these years. Scope 2 and 3 emissions (indirect emissions) of the sector is %80 of the sector’s total and the supply chain of the sector needs to be considered to be able to reduce the sector’s emissions. The proposed model is disseminated through an online platform to serve in decision-making processes in ministries, research institutes, universities, and non-profit organizations.

___

  • Brundtland Commission. Our Common Future. 1987.
  • Birleşmiş Milletler Çevre Programı (United Nations Environmental Programme U. Towards a green economy. 2011.
  • Dünya Sürdürülebilir Kalkınma Zirvesi. Report of the United Nations Conference on Sustainable Development. n.d.
  • Elkington J. Cannibals with forks. Triple Bottom Line 21st Century 1997.
  • Kucukvar M. Life Cycle Sustainability Assessment Framework for the U.S. Built Environment. Doctoral dissertation, University of Central Florida, Orlando, 2013.
  • Türkiye İnşaat Sanayicileri İşveren Sendikası (Intes). İnşaat Sektörü Raporu. 2016.
  • Guinée JB, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, et al. life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. 2002. doi:10.1007/BF02978784.
  • Zamagni A, Guinée J, Masoni P, Heijungs R. Life Cycle Sustainability Analysis, in Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012. doi:10.1002/9781118528372.
  • Onat NC, Kucukvar M, Tatari O. Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options. Energy 2016;112:715–28. doi:10.1016/j.energy.2016.06.129.
  • Zhao Y, Onat NC, Kucukvar M, Tatari O. Carbon and energy footprints of electric delivery trucks: A hybrid multi-regional input-output life cycle assessment. Transp Res Part D Transp Environ 2016;47:195– 207. doi:10.1016/j.trd.2016.05.014.
  • Onat NC, Kucukvar M, Tatari O. Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Appl Energy 2015;150:36– 49. doi:10.1016/j.apenergy.2015.04.001.
  • Onat NC, Kucukvar M, Tatari O. Scopebased carbon footprint analysis of U.S. residential and commercial buildings: An input–output hybrid life cycle assessment approach. Build Environ 2014;72:53–62.
  • Junnila S, Horvath A, Guggemos AA. Life- Cycle Assessment of Office Buildings in Europe and the United States. J Infrastruct Syst 2006;12:10–7. doi:10.1061/(ASCE)1076- 0342(2006)12:1(10).
  • Park YS, Egilmez G, Kucukvar M. Emergy and end-point impact assessment of agricultural and food production in the United States: A supply chain-linked Ecologically-based Life Cycle Assessment. Ecol Indic 2016;62:117–37. doi:10.1016/j.ecolind.2015.11.045.
  • Samaras C, Meisterling K. Life Cycle Assessment of Greenhouse Gas Emissions from Plug-in Hybrid Vehicles: Implications for Policy. Environ Sci Technol 2008;42:3170–6. doi:10.1021/es702178s.
  • Onat NC, Gumus S, Kucukvar M, Tatari O. Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies. Sustain Prod Consum 2016;6:12–25. doi:10.1016/j.spc.2015.12.003.
  • Onat NC, Kucukvar M, Tatari O, Zheng QP. Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U.S. J Clean Prod 2016;112:291–307. doi:10.1016/j.jclepro.2015.09.021.
  • Kucukvar M, Tatari O. A comprehensive life cycle analysis of cofiring algae in a coal power plant as a solution for achieving sustainable energy. Energy 2011;36:6352– 7. doi:10.1016/j.energy.2011.09.039.
  • Noori M, Zhao Y, Onat NC, Gardner S, Tatari O. Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings. Appl Energy 2016;168:146–58. doi:10.1016/j.apenergy.2016.01.030.
  • Huntzinger DN, Eatmon TD. A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 2009;17:668–75. doi:10.1016/j.jclepro.2008.04.007.
  • Hertwich EG. Life cycle approaches to sustainable consumption: a critical review. Environ Sci Technol 2005;39:4673–84.
  • Kloepffer W. Life cycle sustainability assessment of products. Int J Life Cycle Assess 2008;13:89–95.
  • Guinée JB, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R, et al. Life cycle assessment: past, present, and future. Environ Sci Technol 2011;45:90–6. doi:10.1021/es101316v.
  • Finkbeiner M, Schau EM, Lehmann A, Traverso M. Towards Life Cycle Sustainability Assessment. Sustainability 2010;2:3309–22. doi:10.3390/su2103309.
  • Traverso M, Finkbeiner M, Jørgensen A, Schneider L. Life Cycle Sustainability Dashboard. J Ind Ecol 2012;16:680–8. doi:10.1111/j.1530-9290.2012.00497.x.
  • Onat NC, Kucukvar M, Tatari O. Integrating triple bottom line input-output analysis into life cycle sustainability assessment framework: The case for US buildings. Int J Life Cycle Assess 2014;19:1488–505. doi:10.1007/s11367- 014-0753-y.
  • Kucukvar M, Tatari O. Towards a triple bottom-line sustainability assessment of the US construction industry. Int J Life Cycle Assess 2013.
  • Suh S, Lenzen M, Treloar GJ, Hondo H, Horvath A, Huppes G, et al. System Boundary Selection in Life-Cycle Inventories Using Hybrid Approaches. Environ Sci Technol 2004;38:657–64. doi:10.1021/es0263745.
  • Wiedmann TO, Lenzen M, Barrett JR. Companies on the Scale. J Ind Ecol 2009;13:361–83.
  • Tatari O, Nazzal M, Kucukvar M. Comparative sustainability assessment of warm-mix asphalts: A thermodynamic based hybrid life cycle analysis. Resour Conserv Recycl 2012;58:18–24. doi:10.1016/j.resconrec.2011.07.005.
  • Hendrickson CT, Lester BL, Matthews HS. Environmental Life Cycle Assessment of Goods And Services: An Input-Output Approach. Washington DC: 2006.
  • Leontief W. Environmental Repercussions and the Economic Structure: An Input- Output Approach. Rev Econ Stat 1970;52:262–71.
  • Miller RE, Blair PD. Input–output analysis: foundations and extensions. 2nd ed. Cambridge, UK: Cambridge University Press; 2009.
  • Carnegie Mellon University Green Design Institute. Economic Input-Output Life Cycle Assessment (EIO-LCA) 2008. http://www.eiolca.net/index.html.
  • Murray J, Wood R. The sustainability practitioner’s guide to input-output analysis 2010.
  • Horvath A, Hendrickson C. Comparison of environmental implications of asphalt and steel-reinforced concrete pavements. Transp Res Rec … 1998.
  • Hendrickson C, Horvath A. Resource Use and Environmental Emissions of U.S. Construction Sectors 2000.
  • Noori M, Kucukvar M, Tatari O. Economic input-output based sustainability analysis of onshore and offshore wind energy systems. Int J Green Energy, Taylor Fr (Under Rev 2013.
  • Noori M, Kucukvar M, Tatari O. Environmental Footprint Analysis of Onshore and Off-shore Wind Energy Technologies. 2012 IEEE ISSST Int. Symp. Sustain. Syst. Technol. Co-organized with IEEE Soc. Soc. Implic. Technol., Boston, MA: 2012.
  • Onat NC, Egilmez G, Tatari O. Towards greening the U.S. residential building stock: A system dynamics approach. Build Environ 2014;78:68–80. doi:10.1016/j.buildenv.2014.03.030.
  • Onat NC, Kucukvar M, Tatari O. Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Appl Energy 2015;150. doi:10.1016/j.apenergy.2015.04.001.
  • Tatari O, Kucukvar M, Onat NC. Towards a Triple Bottom Line Life Cycle Sustainability Assessment of Buildings. Sci. Sustain. Constr. Manuf. Work. Vol. I. Position Pap. Find., 2015, p. 226.
  • Ercan T, Onat NC, Tatari O. Investigating carbon footprint reduction potential of public transportation in United States: A system dynamics approach. J Clean Prod 2016;133:1260–76. doi:10.1016/j.jclepro.2016.06.051.
  • Ercan T, Onat NC, Tatari O, Mathias J-D. Public transportation adoption requires a paradigm shift in urban development structure. J Clean Prod 2016. doi:10.1016/j.jclepro.2016.11.109.
  • Onat NC, Kucukvar M, Tatari O, Egilmez G. Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles. Int J Life Cycle Assess 2016;21:1009–34. doi:10.1007/s11367-016-1070-4.
  • Onat NC. A macro-level sustainability assessment framework for optimal distribution of alternative passenger vehicles. University of Central Florida, 2015.
  • Onat NC, Noori M, Kucukvar M, Zhao Y, Tatari O, Chester M. Exploring the suitability of electric vehicles in the United States. Energy 2017;121. doi:10.1016/j.energy.2017.01.035.
  • Alirezaei M, Onat NC, Tatari O, Abdel-Aty M. The Climate Change-Road Safety- Economy Nexus: A System Dynamics Approach to Understanding Complex Interdependencies. Systems 2017;5:6.
  • Tatari O, Onat N, Abdel-Aty M, Alirezaei M. Dynamic Simulation Models for Road Safety and Its Sustainability Implications 2015.
  • Onat NC, Kucukvar M, Tatari O. Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles. Sustainability 2014;6:9305–42. doi:10.3390/su6129305.
  • Egilmez G, Kucukvar M, Tatari O, Bhutta MKS. Supply chain sustainability assessment of the U.S. food manufacturing sectors: A life cycle-based frontier approach. Resour Conserv Recycl 2014;82:8–20. doi:10.1016/j.resconrec.2013.10.008.
  • Kucukvar M, Egilmez G, Onat NC, Samadi H. A global, scope-based carbon footprint modeling for effective carbon reduction policies: Lessons from the Turkish manufacturing. Sustain Prod Consum 2015;1:47–66. doi:10.1016/j.spc.2015.05.005.
  • Wiedmann T, Wilting HC, Lenzen M, Lutter S, Palm V. Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input–output analysis. Ecol Econ 2011;70:1937–45. doi:10.1016/j.ecolecon.2011.06.014.
  • Foran B, Lenzen M, Dey C. Balancing Act a Triple Bottom Line Analysis of the Australian Economy Volume 1. In: Csiro, editor. Balanc. Act, vol. 358, CSIRO; 2005, p. 277.
  • Wiedmann T, Lenzen M. Triple-Bottom- Line Accounting of Social, Economic and Environmental Indicators-A New Life- Cycle Software Tool for UK Businesses. … Creat Cult Perth Retrieved from … 2006.
  • Foran B, Lenzen M, Dey C. Balancing Act: a triple bottom line analysis of the Australian economy. vol. 1. 2011.
  • Wiedmann T, Minx J. A Definition of ‘ Carbon Footprint. Science (80- ) 2007;1:1– 11.
  • Malik A, Lenzen M, Geschke A. Triple bottom line study of a lignocellulosic biofuel industry. GCB Bioenergy 2016;8:96–110. doi:10.1111/gcbb.12240.
  • Kucukvar M, Tatari O. Towards a triple bottom-line sustainability assessment of the U.S. construction industry. Int J Life Cycle Assess 2013;18:958–72. doi:10.1007/s11367-013-0545-9.
  • Noori M. Sustainability assessment of wind energy for buildings 2013.
  • Ercan T, Kucukvar M, Tatari O, Al-Deek H. Congestion Relief Based on Intelligent Transportation Systems in Florida. Transp Res Rec J Transp Res Board 2013;2380:81– 9. doi:10.3141/2380-09.
  • Tatari O, Kucukvar M. Eco-Efficiency of Construction Materials: Data Envelopment Analysis. J Constr Eng Manag 2012;138:733–41. doi:10.1061/(ASCE)CO.1943- 7862.0000484.
  • Kucukvar M, Noori M, Egilmez G, Tatari O. Stochastic decision modeling for sustainable pavement designs. Int J Life Cycle Assess 2014;19:1185–99. doi:10.1007/s11367-014-0723-4.
  • Kucukvar M, Egilmez G, Tatari O. Sustainability assessment of U.S. final consumption and investments: triplebottom- line input–output analysis. J Clean Prod 2014;81:234–43. doi:10.1016/j.jclepro.2014.06.033.
  • Egilmez G, Kucukvar M, Tatari O. Sustainability assessment of U.S. manufacturing sectors: an economic input output-based frontier approach. J Clean Prod 2013;53:91–102. doi:10.1016/j.jclepro.2013.03.037.
  • Tukker A, Dietzenbacher E. Global Multiregional Input–Output Frameworks: An Introduction and Outlook. Econ Syst Res 2013;25:1–19. doi:10.1080/09535314.2012.761179.
  • Lenzen M, Geschke A, Wiedmann T, Lane J, Anderson N, Baynes T, et al. Compiling and using input–output frameworks through collaborative virtual laboratories. Sci Total Environ 2014;485:241–51. doi:10.1016/j.scitotenv.2014.03.062.
  • Hoekstra R. A complete database of peerreviewed articles on environmentally extended input-output analysis. 2010.
  • Dietzenbacher E, Lenzen M, Los B, Guan D, Lahr ML, Sancho F, et al. INPUT– OUTPUT ANALYSIS: THE NEXT 25 YEARS. Econ Syst Res 2013:1–21. doi:10.1080/09535314.2013.846902.
  • Onat NC, Kucukvar M, Halog A, Cloutier S. Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives. Sustain 2017, Vol 9, Page 706 2017;9:706. doi:10.3390/SU9050706.
  • Ewing R, Rong F. The impact of urban form on U.S. residential energy use. Hous Policy Debate 2008;19:1–30. doi:10.1080/10511482.2008.9521624.
  • Hertwich EG, Peters GP. Carbon Footprint of Nations: A Global, Trade-Linked Analysis. Environ Sci Technol 2009;43:6414–20. doi:10.1021/es803496a.
  • Dietzenbacher E, Los B, Stehrer R, Timmer M, de Vries G. The Construction of World Input–Output Tables in the WIOD Project. Econ Syst Res 2013;25:71–98. doi:10.1080/09535314.2012.761180.
  • Lenzen M, Moran D, Kanemoto K, Geschke A. Building EORA: A Global Multi-Region Input–Output Database at High Country And Sector Resolution. Econ Syst Res 2013;25:20–49. doi:10.1080/09535314.2013.769938.
  • Tukker A, Poliakov E, Heijungs R, Hawkins T, Neuwahl F, Rueda-Cantuche JM, et al. Towards a global multi-regional environmentally extended input–output database. Ecol Econ 2009;68:1928–37. doi:10.1016/j.ecolecon.2008.11.010.
  • Kovanda J, Weinzettel J. The importance of raw material equivalents in economy-wide material flow accounting and its policy dimension. Environ Sci Policy 2013;29:71– 80. doi:10.1016/j.envsci.2013.01.005.
  • Steen-Olsen K, Weinzettel J, Cranston G, Ercin AE, Hertwich EG. Carbon, Land, and Water Footprint Accounts for the European Union: Consumption, Production, and Displacements through International Trade. Environ Sci Technol 2012;46:10883–91. doi:10.1021/es301949t.
  • Andrew RM, Peters GP. A Multı-Regıon Input–Output Table Based On The Global Trade Analysıs Project Database (Gtap- Mrıo). Econ Syst Res 2013;25:99–121. doi:10.1080/09535314.2012.761953.
  • Wiebe KS, Bruckner M, Giljum S, Lutz C. Calculatıng Energy-Related CO2 Emıssıons Embodıed In Internatıonal Trade Usıng A Global Input–Output Model. Econ Syst Res 2012;24:113–39. doi:10.1080/09535314.2011.643293.
  • Wiedmann TO, Schandl H, Lenzen M, Moran D, Suh S, West J, et al. The material footprint of nations. Proc Natl Acad Sci U S A 2015;112:6271–6. doi:10.1073/pnas.1220362110.
  • Kucukvar M, Cansev B, Egilmez G, Onat NC, Samadi H. Energy-climatemanufacturing nexus: New insights from the regional and global supply chains of manufacturing industries. Appl Energy 2016. doi:10.1016/j.apenergy.2016.03.068.
  • Kucukvar M, Samadi H. Linking National Food Production to Global Supply Chain Impacts for the Energy-Climate Challenge: The Cases of the EU-27 and Turkey. J Clean Prod 2015;108:395–408. doi:10.1016/j.jclepro.2015.08.117.
  • WBCSD & WRI. Corporate value chain (Scope 3) accounting and reporting standard. Geneva, Switzerland: 2011.
  • GHG Protocol Initiative. Guidance for Calculating Scope 3 Emissions 2011. http://www.ghgprotocol.org/files/ghgp/tool s/GHG Protocol Guidance for Calculating Scope 3 Emissions - DRAFT August 2011.pdf.
  • Huang YA, Weber CL, Matthews HS. Categorization of Scope 3 emissions for streamlined enterprise carbon footprinting. Environ Sci Technol 2009;43:8509–15. doi:10.1021/es901643a.
  • Lee K-H. Integrating carbon footprint into supply chain management: the case of Hyundai Motor Company (HMC) in the automobile industry. J Clean Prod 2011;19:1216–23. doi:10.1016/j.jclepro.2011.03.010.
  • T.C. Çevre ve Şehircilik Bakanlığı. Sera gazlarının izlenmesi ve raporlanması 2014. http://www.resmigazete.gov.tr/eskiler/201 4/07/20140722-5.htm.
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı. Enerji verimliliği stratejisi makalesi 2013. http://www.eie.gov.tr/verimlilik/document/ Energy_Efficiency_Strategy_Paper.pdf.
  • Bakanlığı TCK. 10. Kalkınma Planı: 2014- 2018 2013. http://www.kalkinma.gov.tr/Lists/Yaynlar/ Attachments/518/Onuncu Kalkınma Planı.pdf.
  • Foran, B., Lenzen, M., Moran, D., Alsamawi., Geschke, A., Kanemoto, K. Balancing the G20’s Global Impact. KGM & Associates. Univ Sydney, Inst Land, Water Soc 2014. http://apo.org.au/node/42294.
  • Çalışkan, E. T., Aydoğuş O. Türkiye Ekonomisinde Endüstriyel Büyümenin Kaynakları: Girdi-Çıktı Modeli ile Ampirik Bir Analiz (1985-2002). Ege Akad Bakış 2011;11:499–510.
  • Suh S, Ferrao P, Nhambiu J. Handbook of Input-Output Economics in Industrial Ecology. New York: Springer; 2009. doi:10.1007/978-1-4020-5737-3.
  • Timmer M, Erumban A, Gouma R. The world input-output database (WIOD): contents, sources and methods. WIOD Work Pap Number 10 2012. http://www.wiod.org/publications/papers/ wiod10.pdf (accessed November 26, 2014).
  • Eurostat. Eurostat manual of supply, use and input–output tables. Luxembourg: 2008.
  • United Nations. UN (1999) Studies in methods: handbook of national accounting. New York, USA: 1999.
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-4048
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

Altyapı kazılarının planlanmasında CBS tabanlı bir karar destek sistemi önerisi: Fatih ilçesi örneği

Halil İbrahim YUMRUTAŞ, Şükrüye İYİNAM

Asidik ve basik pomza içeren polipropilen kompozitlerinin mekanik, fiziksel ve morfolojik özellikleri

Ümit TAYFUN, YASİN KANBUR

Kabiliyet odaklı sanayi kümelenmesi: Sakarya Üniversitesi teknokent örneği

BERRİN DENİZHAN, AYTEN YILMAZ YALÇINER, Ebru Gizem YILMAZ, Ecem BAYAR

Sakarya Üniversitesi Endüstri Mühendisliği bölümünde uygulamalı mühendislik deneyimi modeli ve öğrenciler üzerindeki etkileri

GÜLTEKİN ÇAĞIL, MERVE CENGİZ TOKLU

Mikro Ark oksidasyon işlemi ile kaplanan Ti6Al4V alaşımının yüzey karakterizasyonu ve korozyon özelliklerinin incelenmesi

Aysun AYDAY

Polipropilen lif kullanımının doğal hidrolik kireçli harçların kuruma büzülmesine etkisi

Muhammet Gökhan ALTUN, SÜLEYMAN ÖZEN, Ali Mardani AGHABAGLOU

Çevre laboratuvarlarından kaynaklanan tehlikeli atıkların yönetimi

ELANUR ADAR, FATİH İLHAN

İnşaat sektörü çalışanlarının işçi sağlığı ve iş güvenliği eğitimleri konusundaki bilinç düzeylerini ölçmeye yönelik bir sektörel araştırma

ÖZGE AKBOĞA KALE, Sümeyra YANIK

Bulanık bozulma ve öğrenme etkileri altında tek makine erken/geç tamamlanma probleminin bulanık şans kısıtlı programlama tekniği ile incelenmesi

OĞUZHAN AHMET ARIK, M. Duran TOKSARI

Düz dişlilerdeki aşınma ve kırık diş hatalarının tespit edilmesinde titreşim verileri kullanılarak istatistiksel proses kontrol uygulaması

SİNAN MARAŞ, HAKAN ARSLAN