Theoritical calculations of LASO molecule by using DFT/B3LYP and DFT/HSEH1PBE levels: A detailed vibrational, NMR and NLO analysis

L-arginine semi-oxalate (LASO) molecule [C6H15N4O2 +.C2HO4 -] was synthesized and its IR and 1H NMR and 13C NMR spectroscopy were studied by P. Vasudevan et al. In this study, the geometric structure determination of LASO molecule was optimized to obtain its molecular geometric structure by using the Gaussian program. The theoretical harmonic vibrational wavenumbers of LASO molecule were also calculated. The calculated theoretical data were checked with the experimental data. The experimental and the theoretical data were seen compatible with each other. Further more; LASO molecule is studied by means of NMR spectra. Finally, the analysis of nonlinear optical (NLO) properties, molecular orbitals (MO), molecular surfaces and Mulliken, APT and NBO populations were viewed. All theoretical calculations have been fulfilled by employing the Density Functional Theory (DFT) at B3LYP/6- 311++G(d,p) and HSEH1PBE/6-311++G(d,p) levels.

___

P. Vasudevan S. Gokul Raj, S. Sankar, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 106, pp. 210- 215, 2013.l. 24, no. 6, pp. 51–63, 2013.

Nagasuma R. Chandra, Moses M. Prabu, Jananı Venkatraman, S. Suresh and M. Vıjaya, Acta Cryst. B, vol. 54, pp. 257-263, 1998.

M J Frisch et al. Gaussian 09, Revision D.01 (Wallingford, CT:Gaussian, Inc) 2009.

GaussView, Version 5, R Dennington, T Keith and J Millam (Shawnee Mission, KS: Semichem Inc) 2009.

A. D. Becke, J Chem. Phys., vol. 98, pp. 5648, 1993.

C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, vol. 37, pp.785, 1988.

J. Heyd and G. Scuseria, J. Chem. Phys. Vol. 121, pp. 1187, 2004.

J. Heyd and G. E. Scuseria J. Chem. Phys., vol. 120, pp. 7274, 2004.

J. Heyd, J. E. Peralta, G. E. Scuseria and R. L. Martin, J. Chem. Phys., vol. 123, pp. 174101, 2005.

J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys., vol. 124, pp. 219906, 2006.

M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., vol. 80, pp. 3265, 1984.

J. B. Foresman, E Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Pittsburgh, PA, USA, 1993.

A. Frish, A. B. Nielsen and A. J. Holder, Gauss View User Manual, Gaussian Inc. Pittsburg, PA, 2001.

W. H. James, E. G. Buchanan, C. W. Müller, J. C. Dean, D. Kosenkov, L. V. Slipchenko, L. Guo, A. G. Reidenbach, S. H. Gellman and T. S. Zwier, J. Phys. Chem. A, vol. 115, pp. 13783, 2011.

K. Fukui, Science, vol. 218, pp. 747, 1982.

A. Cornelis van Walree, Okke Franssen, W. Albert Marsman, C. Marinus Flipseb and W. Leonardus Jenneskens; J. Chem. Soc., Perkin Trans. Vol. 2, 1997.

D. Avci, A. Basoglu, Y. Atalay, International Journal of Quantum Chemistry, vol. 111, pp. 130-147, 2011.

G. Maroulis, Static hyperpolarizability of the water dimer and the interaction hyperpolarizability of two water molecules, J. Chem. Phys., Vol. 113, No. 5, pp. 1813, 2000.

R. G. Pearson, Proceeding of the National Academiy of Sciences, vol. 83, pp. 8440, 1986.

R. S. Mulliken, J. Chem. Phys., vol. 23, pp. 1833, 1955.

A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., vol. 83, pp. 735, 1985.

A. E. Reed and F. Weinhold, J. Chem. Phys., vol. 83, pp. 1736, 1985.

A. E. Reed, L. A Curtiss and F. Weinhold, Chem. Rev., vol. 88, pp. 899, 1988.

C. Cramer, Essentials of Computational Chemistry: Theories and Models, Second Edition, John Wiley and Sons Ltd., 2004.