Spectral Analysis of Non-selfadjoint Second Order Difference Equation with Operator Coefficient

Spectral Analysis of Non-selfadjoint Second Order Difference Equation with Operator Coefficient

In this paper, we consider the discrete Sturm-Liouville operator generated by second order difference equation with non-selfadjoint operator coefficient. This operator is the discrete analogue of the Sturm-Liouville differential operator generated by Sturm-Liouville operator equation which has been studied in detail. We find the Jost solution of this operator and examine its asymptotic and analytical properties. Then, we find the continuous spectrum, the point spectrum and the set of spectral singularities of this discrete operator. We finally prove that this operator has a finite number of eigenvalues and spectral singularities under a specific condition.Keywords: Sturm-Liouville’s operator equation, Non-selfadjoint operators, Discrete operators, Continuous spectrum, Operator coefficients.

___

  • [1] M.A. Naimark, “Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of second order on a semi-axis,” AMS Transl. 2 (16), pp. 103-193, 1960.
  • [2] M.A. Naimark, “Linear Differential Operators, II,” Ungar, New York, 1968.
  • [3] V.E. Lyance, “A differential operator with spectral singularities, I-II,” AMS Transl. 2 (60), pp. 185-225, 227-283, 1967.
  • [4] B.S. Pavlov, “The non-selfadjoint Schrödinger operator in Spectral Theory and Wave Processes, Topics in Mathematical Physics, Vol.1, Birman M.S. (eds), Springer, Boston, MA, pp. 87- 114, 1967.
  • [5] J.T. Schwartz, “Some non-selfadjoint operators,” Comm. Pure Appl. Math., 13, pp. 609-639, 1960.
  • [6] C.M. Bender, “Making sense of nonHermitian Hamiltonians,” Rep. Prog. Phys., 70, pp. 947-1018, 2007.
  • [7] A. Mostafazadeh, “Pseudo-Hermitian representation of quantum mechanics,” arXiv:0810.5643, 2008.
  • [8] B.F. Samsonov, “SUSY transformations between digonalizable and nondiagonalizable Hamiltonians,” arXiv:quant-ph/0503075, 2005.
  • [9] A. Mostafazadeh, “Spectral singularities of complex scattering potentials and infinite reaction and transmission coefficients at real energies,” arXiv:0901.4472, 2009.
  • [10] R.P. Agarwal, “Difference Equations and Inequalities: Theory, Methods and Applications,” Marcel Dekker, New York, 2000.
  • [11] R.P. Agarwal and P.J.Y. Wong, “Advanced Topics in Difference Equations,” Kluwer, Dordrecht, 1997.
  • [12] Y. Aygar and E. Bairamov, “Jost solution and the spectral properties of the matrixvalued difference operators,” Appl. Math. Comput., 218, pp. 9676-9681, 2012.
  • [13] E. Bairamov, Y. Aygar and S. Cebesoy, “Spectral analysis of a selfadjoint matrix valued discrete operator on the whole axis,” J. Nonlinear Sci. Appl., 9, pp. 4257- 4262, 2016.
  • [14] R. Carlson, “An inverse problem for the matrix Schrödinger equation,” J. Math. Anal. Appl., 267, pp. 564-575, 2002.
  • [15] S. Clark, F. Gesztesy and W. Renger, “Trace formulas and Borg-type theorems for matrix valued Jacobi and Dirac finite difference operators,” J. Differential Equations, 219, pp. 144-182, 2005.
  • [16] F. Gesztesy, A. Kiselev and K.A. Makarov, “Uniqueness results for matrixvalued Schrödinger, Jacobi and Dirac-type operators,” Math. Nachr., 239, pp. 103- 145, 2002.
  • [17] E. Bairamov, Ö. Çakar and A.M. Krall, “Non-selfadjoint difference operators and Jacobi matrices with spectral singularities,” Math. Nachr., 229, pp. 5- 14, 2001.
  • [18] A.M. Krall, E.Bairamov and Ö. Çakar, “Spectral analysis of a non-selfadjoint discrete Schrödinger operators with spectral singularities,” Math. Nachr., 231, pp. 89-104, 2001.
  • [19] T. Koprubasi and R.N. Mohapatra, “Spectral properties of generalized eigenparameter dependent discrete SturmLiouville type equation,” Quaestiones Mathematicae, 40 (4), pp. 491-505, 2017.
  • [20] M. Adivar and E. Bairamov, “Spectral properties of non-selfadjoint difference operators,” J. Math. Anal. Appl., 261, pp. 461-478, 2001.
  • [21] M. Adivar and E. Bairamov, “Difference equations of second order with spectral singularities,” J. Math. Anal. Appl., 277, pp. 714-721, 2003.
  • [22] S. Cebesoy, Y. Aygar and E. Bairamov, “Matrix valued difference equations with spectral singularities,” International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 9 (11), pp. 579-582, 2015.
  • [23] M.V. Keldysh, “On the completeness of the eigenfunctions of some classes of nonselfadjoint linear operators,” Russ. Math. Surv., 26 (4), pp. 15-44, 1971.
  • [24] V.P. Serebrjakov, “An inverse problem of the scattering theory for difference equations with matrix coeffcients,” Dokl. Akad. Nauk SSSR, 250 (3), pp. 562-565, 1980 (in Russian).
  • [25] L.A. Lusternik and V.I. Sobolev, “Elements of Functional Analysis,” Halsted Press, New York, 1974.
  • [26] I.M. Glazman, “Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators,” Israel Program for Scientific Translations, Jerusalem, 1965.
  • [27] E.P. Dolzhenko, “Boundary value uniqueness theorems for analytic functions,” Math. Notes, 26 (6), pp. 437- 442, 1979.