Effect of Different Heat Treatments on Mechanical Properties of AISI Steels

Effect of Different Heat Treatments on Mechanical Properties of AISI Steels

Heat treatment has great importance on the mechanical properties of materials. This paper reports experiments on effects of heat treatment on the mechanical and microstructures behavior of AISI 1040 and AISI 1060 steel. To analyze the effect of different heat treatments, AISI 1040 specimens were prepared through quenching, quenching and tempering, normalizing and spheroidizing. To understand effect of tempering time/temperature and annealing time on AISI 1060 steel specimens were prepared through annealing and tempering. Tensile test and hardness test were performed on steel specimens. The mechanical properties of steel specimens were correlated with the microstructure of steels.Keywords: heat treatment 1, mechanical properties 2, microstructures 3, hardness 4

___

  • [1] Y. Zhang, D. Zhan, X. Qi , Z. Jiang, “Effect of tempering temperature on the microstructure and properties of ultrahighstrength stainless steel,” Journal of Materials Science and Technology, vol.35, pp. 1240–1249, 2019.
  • [2] S. Ebner, C. Suppan, R. Schnitzer, C. Hofer, “Microstructure and mechanical properties of a low C steel subjected to bainitic or quenching and partitioning heat treatments,” Materials Science & Engineering A, vol. 735, pp. 1–9, 2018.
  • [3] D. Kong, C. Dong, X. Ni, L. Zhang , J. Yao, C. Man, X. Cheng, K. Xiao, X. Li, “Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes,” Journal of Materials Science & Technology, vol. 35, pp. 1499– 1507, 2019.
  • [4] M.H. K. Sanij, S.S. G. Banadkouki, A.R. Mashreghi, M. Moshrefifar, “The effect of single and double quenching and tempering heat treatments on the microstructure and mechanical properties of AISI 4140 steel,” Materials and Design, vol. 42, pp. 339–346, 2012.
  • [5] A. Saastamoinen, A. Kaijalainen, T. T. Nyo, P. Suikkanen, D. Porter , J. Kömi, “Direct-quenched and tempered low-C high-strength structural steel: The role of chemical composition on microstructure and mechanical properties,” Materials Science & Engineering A, vol. 760, pp. 346–358, 2019.
  • [6] L. Xu, L. Chen, W. Sun, “Effects of soaking and tempering temperature on microstructure and mechanical properties of 65Si2MnWE spring steel,” Vacuum, vol. 154, pp. 322–332, 2018.
  • [7] K. Chen, Z. Jiang , F. Liu, J. Yu, Y. Li, W. Gong, C. Chen, “Effect of quenching and tempering temperature on microstructure and tensile properties of microalloyed ultra-high strength suspension spring steel,” Materials Science and Engineering: A, vol. 766, pp.1–11 2019.
  • [8] A. Saastamoinen, A. Kaijalainen , J. Heikkal, D. Porter , P. Suikkanen, “The effect of tempering temperature on microstructure, mechanical properties and bendability of direct-quenched low-alloy strip steel,” Materials Science and Engineering: A, vol. 730, pp. 284–294, 2018.
  • [9] F. Liu, X. Lin, M. Song, H. Yang, K. Song, P. Guo, W. Huang, “Effect of tempering temperature on microstructure and mechanical properties of laser solid formed 300M steel,” Journal of Alloys and Compounds, vol. 689, pp. 225–232, 2016.
  • [10] S. Wang, H. Yu, H. Gu, T. Zhou, L. Wang, “Effect of trace ferrite on mechanical properties of a tempered HSLA steel.” Materials Science and Engineering: A, vol. 744, pp. 299–304, 2019.
  • [11] B. Jiang, M. Wu, M. Zhang, F. Zhao, Z. Zhao, Y. Liu, “Microstructural characterization, strengthening and toughening mechanisms of a quenched and tempered steel: Effect of heat treatment parameters,” Materials Science and Engineering: A, vol. 707, pp. 306– 314, 2017.