Solvent effects on the performance of the PVA gate dielectric based organic thin film transistors

In this study, we prepared top-gate bottom-contact transistor and characterized. Poly[2-methoxy-5-(2- ethylhexyloxy)-1,4-phenylenevinylene] (MEH:PPV) was used as active layer and Polyvinyl alcohol (PVA) as used gate dielectric material. We investigated solvent effect on the transistor parameters of the devices. Dimethyl sulfoxide (DMSO) and ultra-pure water were used as solvent for PVA. Effect of DMSO on transistor parameters was investigated and clearly seen that DMSO have positively influence transistor parameters such as mobility, on/off ratio and Vth values. Output and transfer properties of OFET’s that has been fabricated by using PVA dissolved in ultra-pure water and DMSO were analayzed. Mobility of the OFET increased when DMSO used as solvent of PVA. Hole mobility’s are found as 3.07x10-5 cm2 V−1 s−1 from PVA:water based device and 2.17x10-4 cm2 V−1 s−1 from PVA:DMSO based device.

PVA Kapı dielektrik tabanlı organik ince film transistörlerin performansı üzerindeki solvent etkileri

Bu çalışmada, üst kapı alt kontak transistörü hazırladık ve karakterize ettik. Aktif tabaka olarak poli [2- metoksi-5- (2-etilheksiloksi) -1,4-fenilenevinilen] (MEH: PPV) kapı dielektrik malzemesi olarak Polivinil alkol (PVA) kullanılmıştır. Cihazların transistör parametreleri üzerinde çözücü etkisini araştırılmıştır. PVA için çözücü olarak dimetil sülfoksit (DMSO) ve ultra saf su kullanılmıştır. DMSO'nun mobilite, açma / kapama oranı ve Vth değerleri gibi transistör parametrelerini olumlu etkilediği açık bir şekilde görülmüştür. Ultra saf su ve DMSO içinde çözünmüş PVA kullanılarak imal edilen OFET'lerin out-put ve transfer özellikleri incelenmiştir. OFET'in hareketliliği, DMSO'nun PVA çözücüsü olarak kullanıldığında artmıştır. Delik hareketliliği PVA: su bazlı cihazdan 3.07x10-5 cm2 V-1 s-1 ve PVA:DMSO tabanlı cihazdan 2.17x10-4 cm2 V-1 s-1 olarak bulunmuştur.

___

S. Scheinert, G. Paasch, I. Hörselmann, A. Herasimovich, Adv. Polym. Sci.223 (2010).155.

C. Liao, F. Yan, “Organic semiconductors in organic thin-film transistor-based chemical and biological sensors,” Polymer reviews, vol.53, pp. 352, 2013.

Chong-An Di, Y. Liu, G. Yu, D. Zhu, “Interface engineering: an effective approach toward high-performance organic field-effect transistors”, Accounts of chemical research, vol. 42 pp. 1573, 2009.

L.Torsi, M. Magliulo, K. Manoli, G. Palazzo, “Organic field-effect transistor sensors: a tutorial review,” Chemical Society reviews, vol. 42, pp. 8612-8628, 2013.

A. N. Sokolov, B. C-K. Tee, C. J. Bettinger, J. B.-H. Tok, Z. Bao, “Mechanistic Considerations of Bending Strain Effects within Organic Semiconductors on Polymer Dielectrics,” Advanced functional materials, vol. 45, pp. 371, 2012.

A. Kösemen, S. E. Sana, M. Okutana, Z. Doğruyol, A. Demir, Y. Yerli, B. Şengez, E. Başaran, F. Yılmaz, “A novel field effect transistor with dielectric polymer gel”, Microelectronic Engineering vol. 88 pp. 17– 20, 2011.

Z. Alpaslan Kösemen, A. Kösemen, S. Öztürk, B. Canimkurbey, S. E. San, Y. Yerli, A. V. Tunç, “Effect of intrinsic polymer properties on the photo sensitive organic field-effect transistors (Photo-OFETs)”, Microelectronic Engineering, vol. 161, pp. 36–42, 2016.

F. Todescato, R. Capelli, F. Dinelli, M. Murgia, N. Camaioni, M. Yang, R. Bozio, M. Muccini, ” Correlation between Dielectric/Organic Interface Properties and Key Electrical Parameters in PPV-based OFETs”, Journal of Physical Chemistry B, vol. 112, pp. 10130–10136, 2008.

G. Horowitz, X. Peng, D. Fichou, F. Garnier, “The oligothiophene‐based field‐effect transistor: How it works and how to improve it”, Journal of Applied Physics, vol. 67, pp. 528, 1990.

F. Dinelli, M. Murgia, P. Levy, M. Cavallini, D. de Leeuw, F. Biscarini, “Spatially correlated charge transport in organic thin film transistors”, Physical Review Letter, vol. 92, pp. 6802, 2004.

K.-Jun Baeg, A. Facchettic, Y.-Young Noh, “Effects of gate dielectrics and their solvents on characteristics of solution-processed Nchannel polymer field-effect transistors”, Journal of Materials Chemistry, vol. 22, pp. 21138, 2012.

L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus and R. H. Friend, “General observation of n-type field-effect behaviour in organic semiconductors”, Nature, vol. 434, pp. 194, 2005.

M.-H. Yoon, C. Kim, A. Facchetti and T. J. Marks, “Gate dielectric chemical structureorganic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors”, Journal of American Chemical Society, vol. 128, pp. 12851, 2006.

Y.-Y. Noh and H. Sirringhaus, “Ultra-thin polymer gate dielectrics for top-gate polymer field-effect transistors”, Organic, Electronic, vol. 10, pp. 174, 2009.

K.-J. Baeg, D. Khim, S.-W. Jung, J. B. Koo, I.-K. You, Y.-C. Nah, D.-Y. Kim and Y.-Y. Noh, “Polymer Dielectrics and Orthogonal Solvents Effects for High Performance Inkjet-Printed Top-Gated P-channel Polymer Field -Effect Transistors”, ETRI Journal, vol. 33, pp. 887, 2011.

N. B. Ukah, J. Granstrom, R. R. Sanganna Gari, G. M. King, S. Guha, “Low-operating voltage and stable organic field-effect

C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics”, Advanced. Materials, vol. 14, pp. 99117, 2002.

F. Antonio, M. H. Yoon and T. J. Marks, “Gate dielectrics for organic field‐effect transistors: New opportunities for organic electronics”, Advanced. Materials, vol. 17, pp. 17051725, 2005.

Veres, J., Ogier, S., G Lloyd, “Gate Insulators in Organic Field-Effect Transistors”, Chemistry of Materials, vol. 16, pp. 4543, 2004.
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-4048
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi Fen Bilimleri Enstitüsü