SKK ve SKNK yöntemlerinde kullanılan parametrelerin bakır ve pirinç malzemelerin birleştirme özelliklerine olan etkilerinin incelenmesi

Bu çalışmada, literatürde verilen bakır ve pirinç malzemelerin aynı veya farklı bir türdeki metale, sürtünme karıştırma kaynağı (SKK) ve sürtünme karıştırma nokta kaynağıyla (SKNK) yapılan birleştirme çalışmaları üzerine bir derleme gerçekleştirilmiştir. Özellikle takım geometrisi, takım dönme ve ilerleme hızı gibi önemli kaynak değişkenlerinin, bu iki yöntemdeki birleştirme performanslarına, kaynak bölgesinin mikroyapı değişimine, kaynak hataları oluşumuna ve farklı metallerin birleştirilmesinde kaynak kalitesini etkileyen metaller arası fazların mevcudiyetine olan etkileri özetlenmiştir. İncelenen çalışmalar arasında saf bakırın yine saf bakıra, pirinç alaşımının yine aynı alaşıma, saf bakırın pirinç alaşımlarına, saf bakır veya pirinç alaşımlarının saf alüminyum veya çeşitli alüminyum alaşımlarına, pirinç alaşımının çelik malzemeye olan birleştirmeleriyle ilgili elde edilen sonuçlar yer almaktadır.

A review on effect of process parameters on weld features of copper and brass material in FSW and FSSW methods

In this study, a literature survey has been done about similar and dissimilar copper and brass alloys joints by friction stir welding and friction stir spot welding methods. The effects of some important process parameters such as tool geometry, rotation speed and travel speed of tool on joint performances, change in weld microstructure, defect formation and occurrence of intermetallic compounds, which are adversely affect weld quality in dissimilar joint, have been summarized. The results of studies about joining of copper to copper, brass to brass, copper to brass, copper to aluminum or alloy, brass to aluminum or alloy, brass to steel have been reviewed in the present work.

___

  • A. M. Russell, K. L. Lee, Structure-Property Relations in Nonferrous Metals, John Wiley & Sons, Inc., Publication, 2005, pp. 301-308.
  • J. E. Bringas, M. L. Wayman, Nonferrous Metals, 4th ed. on CD-ROM, Casti Publishing Inc, Alberta, 2003, pp. 139-158.
  • N. Xu, R. Ueji, Y. Morisada, H. Fujii, “Modification of mechanical properties of friction stir welded Cu joint by additional liquid CO2 cooling,” Materials and Design, vol. 56, pp. 20-25, 2014.
  • Y. F. Sun, N. Xu, H. Fujii, “The microstructure and mechanical properties of friction stir welded Cu–30Zn brass alloys,” Materials Science & Engineering A, vol. 589, pp. 228-234, 2014.
  • R. S. Mishra, M. W. Mahoney, Friction Stir Welding and Processing, ASM International, 2007, pp. 1-368.
  • G. M. Xie, H. B. Cui, Z. A. Luo, W. Yu, J. Ma, G. D. Wang, “Effect of Rotation Rate on Microstructure and Mechanical Properties of Friction Stir Spot Welded DP780 Steel,” Journal of Materials Science & Technology, vol. 32, no. 4, pp. 326-332, 2016.
  • K. P. Mehta, V. J. Badheka, “A Review on Dissimilar Friction Stir Welding of Copper to Aluminum: Process, Properties, and Variants,” Materials and Manufacturing Processes, vol. 31, no. 3, pp. 233-254, 2016.
  • Z. Barlas, “Effect of friction stir spot weld parameters on Cu/CuZn30 bimetal joints,” The International Journal of Advanced Manufacturing Technology, vol. 80, no. 1, pp. 161-170, 2015.
  • Z. Barlas, H. Uzun, “Sürtünme Karıştırma Kaynağı Yapılmış Cu/Al-1050 Alın Birleştirmesinin Mikroyapı ve Mekanik Özelliklerinin İncelenmesi,” Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, vol. 25, no. 4, pp. 857-865, 2010.
  • S. Celik, R. Cakir, “Effect of Friction Stir Welding Parameters on the Mechanical and Microstructure Properties of the Al-Cu Butt Joint,” Metals, vol. 6, pp. 133-147, 2016.
  • A. Abdollah-Zadeh, T. Saeid, B. Sazgari, “Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints,” Journal of Alloys and Compounds, vol. 460, no. 1-2, pp. 535-538, 2008.
  • Z. Barlas, H. Uzun, “Microstructure and mechanical properties of friction stir butt-welded dissimilar pure copper/brass alloy plates,” International Journal of Materials Research, vol. 101, no. 6, pp. 801-807, 2010.
  • Z. P. Cai, B. Q. Ai, R. Cao, Q. Lin, J. H. Chen, “Microstructure and properties of aluminum AA6061-T6 to copper (Cu)-T2 joints by cold metal transfer joining technology,” Journal of Materials Research, vol. 31, no. 18, pp.2876- 2887, 2016.
  • G. Huang, X. Feng, Y. Shen, Q. Zheng, P. Zhao, “Friction stir brazing of 6061 aluminum alloy and H62 brass: Evaluation of microstructure, mechanical and fracture behavior,” Materials and Design, vol. 99, pp. 403-411, 2016.
  • Z. Barlas, “Sürtünme Karıştırma Kaynak Yöntemiyle Birleştirilen Cu İle Cuzn37 Levhaların Mekanik ve Mikroyapı Özellikleri,” Dr. Tezi, Sakarya Üniv. Metal Eğt. A.B.D., Sakarya, Türkiye, 2009.
  • D. Lohwasser, Z. Chen, Friction Stir Weldingfrom Basics to Applications, Wood Head Publishing Limited, 2010.
  • T. Hautala, T. Tianien, “Friction stir welding of copper,” in Proceedings of the Sixth International Conference on Trends in Welding Research, Pine Mountain, GA, ASM International, 2003, pp. 324-328.
  • I. Galvão, J. C. Oliveira, A. Loureiro, D. M. Rodrigues, “Formation and distribution of brittle structures in friction stir welding of aluminium and copper: Influence of shoulder geometry,” Intermetallics, vol. 22, pp. 122-128, 2012.
  • I. Galvão, R. M. Leal, D. M. Rodrigues, A. Loureiro, “Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets,” Journal of Materials Processing Technology, vol. 213, no. 2, pp. 129-135, 2013.
  • J. Teimurnezhad, H. Pashazadeh, A. Masumi, “Effect of shoulder plunge depth on the weld morphology, macrograph and microstructure of copper FSW joints,” Journal of Manufacturing Processes, vol. 22, pp. 254-259, 2016.
  • H. Khodaverdizadeh, A. Heidarzadeh, T. Saeid, “Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints,” Materials and Design, vol. 45, pp. 265-270, 2013.
  • S. Siddharth, T. Senthilkumar, “Optimization of Friction Stir Spot Welding Process Parameters of Dissimilar Al 5083 and C 10100 Joints Using Response Surface Methodology,” Russian Journal of Non-Ferrous Metals, vol. 57, no. 5, pp. 456-466, 2016.
  • R. Heideman, C. Johnson, S. Kou, “Metallurgical analysis of Al/Cu friction stir spot welding,” Science and Technology of Welding and Joining, vol. 15, no. 7, pp. 597-604, 2010.
  • G. M. Xie, Z. Y. Ma, ve L. Geng, “Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper,” Scripta Materialia, vol. 57, no. 2, pp. 73-76, 2007.
  • H. S. Park, T. Kimura, T. Murakami, Y. Nagano, K. Nakata, M. Ushio, “Microstructures and mechanical properties of friction stir welds of 60% Cu–40% Zn copper alloy,” Materials Science and Engineering: A, vol. 371, no. 1-2, pp. 160-169, 2004.
  • H. Khodaverdizadeh, A. Mahmoudi, A. Heidarzadeh, E. Nazari, “Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints,” Materials and Design, vol. 35, pp. 330-334, 2012.
  • K. P. Mehta, ve Vishvesh J. Badheka, “Experimental investigation of process parameters on defects generation in copper to AA6061-T651 friction stir welding,” Int'l Journal of Advances in Mechanical & Automobile Eng. (IJAMAE), vol. 3, no. 1, pp. 55- 58, 2016.
  • C. Meran, “The joint properties of brass plates by friction stir welding,” Materials and Design, vol. 27, no. 9, pp. 719-726, 2006.
  • G. Çam, H.T. Serindağ, A. Çakan, S. Mistikoğlu, H. Yavuz, “The effect of weld parameters on friction stir welding of brass plates,” Materialwissenschaft und Werkstofftechnik, vol. 39, no. 6, pp. 394-399, 2008.
  • J. J. Shen, H. J. Liu, F. Cui, “Effect of welding speed on microstructure and mechanical properties of friction stir welded copper,” Materials and Design, vol. 31, no. 8, pp. 3937- 3942, 2010.
  • K. Surekha, A. Els-Botes, “Development of high strength, high conductivity copper by friction stir processing,” Materials and Design, vol. 32, no. 2, pp. 911-916, 2011.
  • M. Sarvghad Moghaddam, R. Parvizi, M. Haddad-Sabzevar, A. Davoodi, “Microstructural and mechanical properties of friction stir welded Cu–30Zn brass alloy at various feed speeds: Influence of stir bands,” Materials and Design, vol. 32, no. 5, pp. 2749-2755, 2011.
  • P. Liu, Q. Shi, W. Wang, X. Wang, Z. Zhang, “Microstructure and XRD analysis of FSW joints for copper T2/aluminium 5A06 dissimilar materials,” Materials Letters, vol. 62, no. 25, pp. 4106-4108, 2008.
  • T. Saeid, A. Abdollah-zadeh, B. Sazgari, “Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding,” Journal of Alloys and Compounds, vol. 490, no. 1-2, pp. 652-655, 2010.
  • S. A. Khodir, M. M. Z. Ahmed, Essam Ahmed, Shaymaa M. R. Mohamed, H. Abdel-Aleem, “Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints,” Journal of Materials Engineering and Performance, vol. 25, no. 11, pp. 4637-4648, 2016.
  • V. C. Sinha, S. Kundu, S. Chatterjee, “Microstructure and mechanical properties of similar and dissimilar joints of aluminium alloy and pure copper by friction stir welding,” Perspectives in Science, vol. 8, pp. 543-546, 2016.V. C. Sinha, S. Kundu, S. Chatterjee, “Microstructure and mechanical properties of similar and dissimilar joints of aluminium alloy and pure copper by friction stir welding,” Perspectives in Science, vol. 8, pp. 543-546, 2016.
  • C. Meran, V. Kovan, “Microstructures and mechanical properties of friction stir welded dissimilar copper/brass joints,” Materialwissenschaft und Werkstofftechnik, 39, no. 8, pp. 521-530, 2008.
  • Y. F. Sun, H. Fujii, “Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper,” Materials Science and Engineering A, vol. 527, no. 26, pp. 6879-6886, 2010.
  • Z. Barlas, “Weldability of CuZn30 brass/DP600 steel couple by friction stir spot welding,” Acta Physica Polonica A, basılacak.
  • Z. Zhang, X. Yang, J. Zhang, G. Zhou, X. Xu, B. Zou, “Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy,” Materials and Design, vol. 32, no. 8-9, pp. 4461- 4470, 2011.
  • M.K. Abbass, S. Hussein, A.A. Kudair, “Optimization of Friction Stir Spot Welding Parameters of Dissimilar Welded Joints of Aluminum Alloy (AA2024T3) with Pure Copper Sheets,” International Journal of Engineering Sciences & Research Technology, vol. 4, no. 12, pp. 514-526, 2015.
  • M. Akbari, R. Abdi Behnagh, A. Dadvand, “Effect of materials position on friction stir lap welding of Al to Cu,” Science and Technology of Welding and Joining, vol. 17, no. 7, pp. 581-588, 2012.
  • P. Xue, B. L. Xiao, D. R. Ni, Z. Y. Ma, “Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds,” Materials Science and Engineering A, vol. 527, no. 21-22, pp. 5723- 5727, 2010.
  • P. K. Sahu, S. Pal, S. K. Pal, R. Jain, “Influence of plate position, tool offset and tool rotational speed on mechanical properties and microstructures of dissimilar Al/Cu friction stir welding joints,” Journal of Materials Processing Technology, vol. 235, pp. 55-67, 2016.
  • P. Xue, D. R. Ni, D. Wang, B. L. Xiao, Z. Y. Ma, “Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al-Cu joints,” Materials Science and Engineering A, vol. 528, no. 13-14, pp. 4683- 4689, 2011.
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-4048
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi Fen Bilimleri Enstitüsü