Eksenel yönde tabakalı kirişlerin temel frekansı üzerinde tabaka dizilişinin etkileri

Bu çalışmada eksenel yönde tabakalara sahip kirişlerin serbest titreşim davranışı üzerinde tabaka dizilişinin etkisi Timoshenko kiriş teorisine göre sonlu elemanlar programı (ANSYS) kullanılarak incelenmiştir. Her tabaka Alüminyum/Alüminyum oksit, Alüminyum/Zirkonyum ve Alüminyum/Nikel gibi farklı sistemlere sahiptir. Tabaka dizilişi Taguchi Metodunda L9 orthogonal dizi kullanılarak yürütülmüştür. Optimum tabaka dizilişini elde edebilmek için Taguchi Metodu ve optimum tabaka kombinasyonu kullanıldı. Yanıtlar üzerinde önemli tabakaları ve katkı yüzdelerini gerçekleştirebilmek için Varyans Analizi (ANOVA) kullanıldı. Sonuçlara göre yanıtlar üzerinde en etkili parametreler sırasıyla %67.94 ile Alüminyum/Alüminyum oksit, %31.08 ile Alüminyum/Nikel ve %0.95 ile Alüminyum/Zirkonyum için elde eddilmiştir. İlk mod olarak da bilinen temel frekans değerleri tabakalardaki Alüminyum/Alüminyum oksit ve Alüminyum/Zirkonyum içeriklerinin artmasıyla artmış ve Alüminyum/Nikel içeriğinin artması ile azalmıştır.

The effects of layer arrangements on fundamental frequency of layered beams in axial direction

In this study, the influence of layer arrangements on free vibration behavior of beams which have layers in the axial direction is investigated according to Timoshenko Beam Theory by using finite element program (ANSYS). Each layer has different systems such as Aluminum/Alumina, Aluminum/Zirconia and Aluminum/Nickel. Layer arrangements are conducted using the L9 orthogonal array in Taguchi Method. In order to obtain the sorting order of optimum layers, Taguchi Method and optimum layer combination are utilized. Analysis of Variance (ANOVA) is used to carry out the significant layers and percentage of contribution on the responses. According to the results, the most effective parameters on the responses are obtained for Aluminum/Alumina with 67.94%, Aluminum/Nickel with 31.08% and Aluminum/Zirconia with 0.95%, respectively. Fundamental frequency values, also known as the first mode frequency values, increase with the increasing Aluminum/Alumina and Aluminum/Zirconia contents and decrease with the increasing Aluminum/Nickel content in layers.

___

  • [1] K. Chandrashekhara, and K.M. Bangera, "Free vibration of composite beams using a refined shear flexible beam element". Computers & Structures, vol. 43, no. 4, pp. 719-727, 1992.
  • [2] W.L. Li, "Free Vibrations Of Beams With General Boundary Conditions". Journal of Sound and Vibration, vol. 237, no. 4, pp. 709- 725, 2000.
  • [3] B.A.H. Abbas, "Vibrations of Timoshenko beams with elastically restrained ends". Journal of Sound and Vibration, vol. 97, no. 4, pp. 541-548, 1984.
  • [4] S.Y. Lee, and H.Y. Ke, "Free vibrations of a non-uniform beam with general elastically restrained boundary conditions". Journal of Sound and Vibration, vol. 136, no. 3, pp. 425- 437, 1990.
  • [5] Q. Mao, and S. Pietrzko, "Free vibration analysis of stepped beams by using Adomian decomposition method". Applied Mathematics and Computation, vol. 217, no. 7, pp. 3429-3441, 2010.
  • [6] S.K. Jang, and C.W. Bert, "Free vibration of stepped beams: Exact and numerical solutions". Journal of Sound and Vibration, vol. 130, no. 2, pp. 342-346, 1989.
  • [7] J.W. Jaworski, and E.H. Dowell, "Free vibration of a cantilevered beam with multiple steps: Comparison of several theoretical methods with experiment". Journal of Sound and Vibration, vol. 312, no. 4–5, pp. 713-725, 2008.
  • [8] F. Ju, H.P. Lee, and K.H. Lee, "On the free vibration of stepped beams". International Journal of Solids and Structures, vol. 31, no. 22, pp. 3125-3137, 1994.
  • [9] D.Y. Zheng, and N.J. Kessissoglou, "Free vibration analysis of a cracked beam by finite element method". Journal of Sound and Vibration, vol. 273, no. 3, pp. 457-475, 2004.
  • [10] M. Kisa, and M. Arif Gurel, "Free vibration analysis of uniform and stepped cracked beams with circular cross sections". International Journal of Engineering Science, vol. 45, no. 2–8, pp. 364-380, 2007.
  • [11] K. Chandrashekhara, K. Krishnamurthy, and S. Roy, "Free vibration of composite beams including rotary inertia and shear deformation". Composite Structures, vol. 14, no. 4, pp. 269-279, 1990.
  • [12] S. Kapuria, M. Bhattacharyya, and A.N. Kumar, "Bending and free vibration response of layered functionally graded beams: A theoretical model and its experimental validation". Composite Structures, vol. 82, no. 3, pp. 390-402, 2008.
  • [13] M. Aydogdu, and V. Taskin, "Free vibration analysis of functionally graded beams with simply supported edges". Materials & Design, vol. 28, no. 5, pp. 1651-1656, 2007.
  • [14] K.K. Pradhan, and S. Chakraverty, "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method". Composites Part B: Engineering, vol. 51, no., pp. 175-184, 2013.
  • [15] M. Şimşek, "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories". Nuclear Engineering and Design, vol. 240, no. 4, pp. 697-705, 2010.
  • [16] S.A. Sina, H.M. Navazi, and H. Haddadpour, "An analytical method for free vibration analysis of functionally graded beams". Materials & Design, vol. 30, no. 3, pp. 741- 747, 2009.
  • [17] A.E. Alshorbagy, M.A. Eltaher, and F.F. Mahmoud, "Free vibration characteristics of a functionally graded beam by finite element method". Applied Mathematical Modelling, vol. 35, no. 1, pp. 412-425, 2011.
  • [18] Y. Huang, and X.-F. Li, "A new approach for free vibration of axially functionally graded beams with non-uniform cross-section". Journal of Sound and Vibration, vol. 329, no. 11, pp. 2291-2303, 2010.
  • [19] M. Şimşek, "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories". Composite Structures, vol. 92, no. 4, pp. 904- 917, 2010.
  • [20] Y. Yilmaz, and S. Evran, Free vibration analysis of axially layered functionally graded short beams using experimental and finite element methods, Science and Engineering of Composite Materials, vol. 23, no. 4, pp. 453- 460, 2015.
  • [21] H.-S. Shen, "Functionally graded materials: nonlinear analysis of plates and shells", CRC press, 2009.
  • [22] G.M.S. Bernardo, F.R. Damásio, T.A.N. Silva, and M.A.R. Loja, "A study on the structural behaviour of FGM plates static and free vibrations analyses". Composite Structures, vol. 136, no., pp. 124-138, 2016.
  • [23] G.N. Praveen, and J.N. Reddy, "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates". International Journal of Solids and Structures, vol. 35, no. 33, pp. 4457-4476, 1998.
  • [24] J.R. Cho, and J.T. Oden, "Functionally graded material: a parametric study on thermal-stress characteristics using the Crank–Nicolson– Galerkin scheme". Computer Methods in Applied Mechanics and Engineering, vol. 188, no. 1–3, pp. 17-38, 2000.
  • [25] G. Taguchi, S. Chowdhury, and Y. Wu, "Taguchi's Quality Engineering Handbook", Wiley, 2005.
  • [26] R.K. Roy, "A primer on the Taguchi method", Van Nostrand Reinhold, 1990.
  • [27] P.J. Ross, "Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design", McGraw-Hill, 1996.
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-4048
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi Fen Bilimleri Enstitüsü