Nano Polimerik Tiyofenlerin Hazırlanması ve Yapılarının Karakterizasyonu

Bu çalışma, oksidant olarak FeCl3 kullanarak nano polimerik tiyofenin hazırlanması için kimyasal oksidatif polimerizasyonu açıklamaktadır. Polimerizasyon prosedüründe monomer olarak 2-tiyofenkarboksialdehit kullanılmıştır. Sentezlenen nano polimerik tiyofenin yapıları, taramalı elektron mikroskobu (SEM), Fourier transform infrared spektroskopisi (FTIR), Termogravimetrik analiz (TGA), Raman Spektroskopisi ve C, H, O ve S'nin elemental analizi ile doğrulanmıştır. SEM görüntüleri ile polimerin nano boyutlarda sentezlenmiş olduğu, homojen ve pürüzsüz bir yapıya sahip olduğu tespit edilmiştir. Oluşan parçacıkların boyutlarının 35 nm'den fazla olmadığı görülmüştür. Nano polimerik tiyofenin termal analizi polimerin 512 OC'ye kadar termik olarak stabil olduğunu göstermiştir. Elementel analiz sonuçları incelendiğinde, nano polimerik tiyofenin sentezi sonucu elde edilen veriler ile teorik olarak belirlenen verilerin birbiri ile uyum içerisinde olduğu görülmüştür.

Preparation of Nano Polymeric Thiophenes and Characterization of the Structures

This article describes a chemical oxidative polymerization for the preparation of nano polymeric thiophene by using FeCl3 as oxidant. 2-thiophenecarboxaldehyde (2-THCA) as monomer was used at polymerization process. The structure of synthesized nano polymeric thiophene was confirmed by  scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Raman Spectroscopy, and elemental analysis of C, H, O and S. SEM images showed that the poly(2-thiophenecarboxaldehyde) (PTHCA) was synthesized in nanoscale and had a homogeneous and smooth structure. The size of the synthesized nano particles was not more than 35 nm. Thermal analysis of nano polymeric thiophene showed thermally stable up to 512 OC. When elemental analysis results of PTHCA were examined, it was seen that the obtained data after the synthesis of nano polymeric thiophene and the determined data theoretically were agree with each other.

___

  • S. Sakthivel, A. Boopathi, "Synthesis and preparation of polythiophene thin film by spin coating method," Int. J. Sci. Res. sec. 141, pp. 97-100, 2014.
  • A. Acharya, R. Mishra, G.S Roy, "Characterization of Cdse/Polythiophene Nanocomposite by TGA/DTA, XRD, UV-VIS Spectroscopy, SEM-EDXA and FTIR," Armen. J. Phys., sec. 3, pp. 195-202, 2010.
  • A. Gok, M. Omastova, A.G. Yavuz, "Synthesis and characterization of polythiophenes prepared in the presence of surfactants," Synth. Met. sec. 157, pp. 23–29, 2007.
  • B. Massoumi, M. Jaymand, "Conducting poly(vinyl chloride)-graft-polythiophene: synthesis, characterization, and materials properties," J. Mater. Sci: Mater Electron, sec. 27, pp. 2267–2275, 2016.
  • S. Kumar, P.K. Dutta, P. Sen, "Preparation and characterization of optical property of crosslinkable film of chitosan with 2-thiophenecarboxaldehyde," Carbohydr. Polym., sec. 80, pp. 563–569, 2010.
  • M. O. Ansari, M. M. Khan, S. A. Ansari, M. H. Cho, "Polythiophene nanocomposites for photodegradation applications: Past, present and future," J. Saudi Chem. Soc. sec. 19 pp. 494–504, 2015.
  • T. Skotheim, J. Reynolds, "Elsenbamer, R. Handbook of Conducting Polymers," 2nd ed. New York: Marcel Dekker, 1998, pp. 226.
  • H. Ho, A. Najari, M. Leclerc, "Optical detection of DNA and proteins with cationic polythiophenes," Acc. Chem. Res., sec. 41, pp. 168-178, 2008.
  • J. K. Mwaura, X. Zhao, H. Jiang, K. S. Schanze, J. R. Reynolds, "Spectral broadening in nanocrystalline TiO2 solar cells based on poly(p-phenylene ethynylene) and polythiophene sensitizers," Chem. Mater.sec. 18, pp. 6109-6111, 2006.
  • E. Zhou, C. He, Z. Tan, C. Yang, Y. Li, "Synthesis and properties of polythiophenes with conjugated side-chains containing carbon–carbon double and triple bonds," J. Polym. Sci. A sec. 44, pp. 4916–4922, 2006.
  • Y. Zou,; W. Wu, G. Sang, Y. Yang, Y. Liu, Y. Li, "Polythiophene derivative with phenothiazine-vinylene conjugated side chain: Synthesis and its application in field-effect transistors," Macromolecules,sec. 40, pp. 7231-7237, 2007.
  • L. RuoChen, L. ZhengPing, "Polythiophene: Synthesis in aqueous medium and controllable morphology," Chinese Sci Bull., sec. 54 , pp. 2028-2032, 2009.
  • R. J. Waltman, J. Bargon, A F. Diaz, "Electrochemical studies of some conducting polythiophene films," J. Phys. Chem., sec. 87, pp. 1459-1463, 1983.
  • B. Sarı, M. Talu, F. Yıldırım, E.K. Balcı, "Synthesis and Characterization of Polyurethane/Polythiophene Conducting Copolymer by Electrochemical Method," Appl. Surf. Sci.; sec. 205, pp. 27-38, 2003.
  • I. B. Khalifa, S. Ayachi, B. Zaidi, M. Bouachrine, A. Mabrouk, K. Alimi, "Correlation structure–properties of poly(3-methyl-thiophene) (P3MTh) synthesized using TiCl4 as an oxidant," Synth. Met. sec. 162, pp. 1724–1730, 2012.
  • M. Chahma, "Synthesis and characterization of poly(thiophene sulfides) prepared via chemically initiated oxidative polymerization methods," Synth. Met. sec. 155, pp. 474–479, 2005.
  • E. Agosti, M. Rivola, V. Hernandez, M.D. Zoppo, G. Zerbi, “Electronic and dynamical effects from the unusual features of the Raman spectra of oligo and polythiophenes,” Synth. Met. Sec. 100, pp. 101–112, 1999.
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-4048
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi Fen Bilimleri Enstitüsü