Karyotype features based on diploid number and sex chromosome system of Steatoda grossa (Araneae: Theridiidae) from Turkey

In this study, karyotypic investigation of Steatoda grossa belonging to the family Theridiidae was carried out to contribute cytogenetic relationships of the family. A standard air-drying method was used to obtain chromosome slides including three main steps as hypotonisation, fixation and staining. As a result, the diploid number and sex chromosome system was determined as 2n♂=22 (X1X2). All chromosomes were telocentric and gradually decreased in size. Sex chromosomes were positively heteropycnotic in the stages of meiosis I, and isopycnotic in meiosis II. The results showed the similarity with the previous investigations obtained from different populations.

___

[1] World Spider Catalog 2019. The World Spider Catalog. Version 20.0. Natural History Museum Bern. Available at: http://wsc.nmbe.ch Date Accessed: 2019.05.05.

[2] Faúndez, E. I., and M. A. Carvajal, “The spider genus Steatoda Sundevall, 1833 (Arachnida: Theridiidae) in the state of North Dakota (USA)”, Revista Ibérica de Aracnología, vol. 29, pp. 83-85, 2016.

[3] H. Demir and O. Seyyar, “Annotated checklist of the spiders of Turkey,” Munis Entomology & Zoology, vol. 12, no. 2, pp. 433-469, 2017.

[4] J.A. Coddington and H.W. Levi, “Systematics and evolution of spiders (Araneae)”, Annual Review Ecology, Evolution and Systematics, vol. 22, pp. 565-592, 1991.

[5] D. Araujo, M.C. Schneider, E. Paula-Neto and D.M. Cella, “The spider cytogenetic database”, Available in, http://www.arthropodacytogenetics.bio.br.spi derdatabase, Jan, 2019.

[6] W. Hackman, “Chromosomenstudien an Araneen mit besonderer berücksichtigung der geschlechtschromosomen”, Acta Zoologica Fennica, vol. 54, pp. 1-101, 1948.

[7] I. P. Gorlov, O.Yu. Gorlova, And D.V. Logunov, “Cytogenetic studies on Siberian spiders”, Hereditas, vol. 122, pp. 211-220, 1995.

[8] C. R. Tugmon, J.D. Brown, And N.V. Horner, “Karyotypes of seventeen USA spiders species (Araneae, Araneidae, Gnaphosidae, Loxoscelidae, Lycosidae, Oxyopidae, Philodromidae, Salticidae and Theridiidae)”, The Journal of Arachnology, vol. 18, pp. 41- 48, 1990.

[9] B. Taşdemır, I. Varol, And A. Akpınar, “Cytotaxonomical studies on six species of spiders (Arachnida: Araneae) from Turkey”, Türkiye entomoloji bülteni, vol. 2, pp. 55-59, 2012.

[10] J. Král, J. Musilová, F. Št`Áhlavský, M. Řezáč, Z. Akan, R. L. Edwards, F.A. Coyle and C.R. Almerje, “Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae)”, Chromosome Research, vol. 14, pp. 859-880, 2006.

[11] A. Levan, K. Feradga and A. A. Sandberg, “Nomenclature for centromeric position on chromosomes,” Hereditas, vol. 52, pp. 201- 220, 1964.

[12] Y. Zhao, N.A. Ayoub and C. Y. Hayashi, “Chromosome mapping of dragline silk genes in the genomes of widow spiders (Araneae, Theridiidae)”, PLoS ONE, vol. 5, no. 9, e12804, pp. 1-8, 2010.

[13] L. M. Stávale, M. C. Schneıder, D. Araujo, A. D. Brescovıt and D. M. Cella, “Chromosomes of Theridiidae spiders (Entelegynae): interspecific karyotype diversity in Argyrodes and diploid number intraspecific variability in Nesticodes rufipes”, Genetics and Molecular Biology, vol. 33, no. 4, pp. 663-668, 2010.

[14] S. N. Datta and K. Chatterjee, “Chromosome number and sex-determining system in fiftytwo species of spiders from North-East India”, Chromosome Information Service, vol. 35, pp. 6-8, 1983.

[15] A. Kageyama and T. Seto, “Chromosomes of seven species of Japanese theridiid spiders”, Chromosome Information Service, vol. 27, pp. 10-12, 1979.

[16] D. Araujo, U. M. Maia and A. D. Brescovit, “The first cytogenetic characterization of the poisonous black widow spider Latrodectus gr. curacaviensis from Brazil, with chromosomal review of the family Theridiidae (Arachnida, Araneae)”, Micron, vol. 41, pp. 165-168, 2010.

[17] J. Liu, L. J. M. Collado, S. Pekár and I. Agnarsson, “A revised and dated phylogeny of cobweb spiders (Araneae, Araneoidea, Theridiidae): A predatory Cretaceous lineage diversifying in the era of the ants (Hymenoptera, Formicidae)”, Molecular Phylogenetics and Evolution, vol. 94, pp. 658- 675, 2016.

[18] G. Barrantes and W. G. Eberhard, “Ontogeny repeats phylogeny in Steatoda and Latrodectus spiders”, Journal of Arachnology, vol. 38, no. 3, pp. 485-494, 2010.