İki aşamalı C band erbiyum katkılı fiber yükselteçlerde ( EKFY ) kazanç düzleştirici filtre optimizasyonu

En yaygın optik yükselteç olan EKFY, dalga boyuna bağlı, düz olmayan bir kazanç spektrumuna sahiptir. Yüksek band genişliği gerektiren durumlarda yaygın olarak kullanılan Dalgaboyu Bölmeli Çoğullama (DBÇ) sistemlerinde, EKFY'nin düz olmayan kazanç spektrumundan dolayı çıkış sinyalleri arasında kazanç farklılıkları oluşur. Kazanç düzleştirici filtreler kullanılarak bu farklılıklar giderilebilir. Bu çalışmada, iki Erbiyum katkılı fiber arasına C bandı (1530 nm-1565 nm) boyunca düz bir kazanç spektrumu sağlamak için kazanç düzleştirici filtre yerleştirilmiş ve tüm sistemin kazanç spektrumu optimize edilmiştir.

Gain flattening filter optimization of the two stage C band erbium dobed fiber amlifiers (EDFA)

The most prevalent optical amplifier is EDFA that has a wavelength dependent non-flat gain spectrum. When Wavelength Division Multiplexing (WDM) systems used for high bandwidth demand some gain variations arises from the uneven gain spectrum of EDFA. Gain flattening filters are used to eliminate this gain differences. In this study, we have placed a passive filter between the two stages of erbium doped fiber, and optimized the gain spectrum of the whole system that gives a flat gain spectrum along the well known C band (1530 nm-1565 nm).

___

  • [1]. Singh, R., Sunanda, Sharma, E. K. "Gain flattening by long period gratings in erbium doped fibers". Optics Communications (240), 123-132, (2004).
  • [2]. Sohn, I.-B., Song, J.-W. "Gain flattened and improved double-pass two-stage EDFA using microbending long-period fiber gratings". Optics Communications (236), 141-144, (2004).
  • [3]. Dung, S., J.C. Chi, Wen, S. "Gain Flattening of Erbium-doped Fibre Amplifier Using Fibre Bragg Gratings", Electronics Letters, 34(6), 555, (1998).
  • [4]. Choi, H.B., Oh, J.M., Lee, D., Ahn, S.J., Park, B.S, Lee, S.B. "Simple and efficient L-Band Erbium-Doped Fiber Amplifiers for WDM Networks", Optics Communications (213), 63-66, (2002).
  • [5], Mahdi, M. A., Sheih, S. J. "Gain-FlattenedExtended L-band EDFA with 43nm Bandwidth Suitable for High Signal Powers", Optics Communications, 234. 229-233,(2004).
  • [6]. Mizuno, K., Nishi, Y., Mimura, Y., Lida, Y., Matsuura, H., Yoon, D., Aso, O., Yamamoto, T., Toratani, T., Ono, Y., Yo, A. "Development of Etalon-Type Gain-Flattening Filter", Furukawa Review, No. 19, 53-58, (2000).
  • [7]. Yoshida, S., Kuwano, S., Iwashita, K. "Gain-flattened EDFA with High AI Concentration for multistage repeatered WDM transmission systems". Electronics Letters, 31, 1765-1767, (1995).
  • [8]. Vallon, S., Chevallier, P., Guiziou, L., Alibert, G., How Kee Chun, L. S., Boos, N. "40-Band Integrated Static Gain-Flattening Filter", IEEE Photonics Technology Letters, 15(4), 554-556, (2003).
  • [9]. Giles, C. R., Di Giovanni, D. J. "Dynamic Gain Equalization in Two-Stage Fiber Amplifiers'', IEEE Photonics Technology Letters, 2(12), (1990).
  • [10].Desurvire, E. "Erbium-Doped Fiber Amplifiers: Principles and Applications", John Wiley&Sons, (1994).
  • [11].Giles, C. R., Desurvire, E., "Modeling Erbium-Doped Fiber Amplifiers", Journal of Lightwave Technology, 9(2), 271-283, (1991).