Hidrojen Gelişim Reaksiyonu İçin Bakır-Çinko İkili Kaplama

Yüksek hidrojen gelişim reaksiyonu (HER) için dayanıklılık aktivitesine sahip farklı kaplamalar elektrokimyasal kaplama yöntemi ile hazırlanmıştır. Demir, bakır ve çinko alaşımları grafit elektrot üzerine çöktürüldü. Grafit elektrotu üzerine ikili kaplamalar hazırlanmıştır. Çinko alaşımları, HER' de kullanım için uygun gözenekli ve elektrokatalitik bir yüzey oluşturmak için alkali çözeltide aşındırılmıştır. Yüzey karakterizasyonu için taramalı elektron mikroskobu (SEM) kullanılmıştır. Elektroliz, DC güç kaynağı ile 1,0 M KOH çözeltisi içinde gerçekleştirilmiştir. Kimyasal karakterizasyon için katodik akım-potansiyel eğrileri, elektrokimyasal impedans spektroskopisi ve dönüşümlü voltametri ölçümleri yapılmıştır. Deneysel sonuçlar, aşındırılmış çinko alaşımlarının, HER için diğer elektrotlara kıyasla, fiziksel istikrarı iyi olan kompakt ve gözenekli yapılara sahip olduklarını göstermektedir.

Copper – Zinc and Copper-İron Binary Electrode for Hydrogen Evolution Reaction

The different coatings with high hydrogen evolution reaction (HER) durability activity were prepared by electrodeposition. Iron, copper and zinc alloys were deposited on graphite electrode. The binary coating prepared on the graphite electrode. Zinc alloys were etched in alkaline solution to produce a porous and electrocatalytic surface suitable for use in the HER. The scanning electron microscopy (SEM) was used for surface characterization. Electrolysis was carried out in 1.0 M KOH solution by DC power supply. Cathodic current–potential curves, electrochemical impedance spectroscopy and cyclic voltammetry measurements were performed for chemical characterization. The experimental results show that the etching zinc alloys have compact and porous structures with good physical stability in comparison with other deposit for HER.

___

  • Referans1 J. K. Lee, Y. Yi, H. J. Lee, S.Uhm, J. Lee, “Electrocatalytic activity of Ni nanowires prepared by galvanic electrodeposition for hydrogen evolution reaction”, Catalysis Today, Vol. 146, no 1–2, pp. 188-191, 2009. Referans2 E.Baran, B.Yazici, “Effect of different nano-structuredAg doped TiO2-NTs fabricated by electrodeposition on the electrocatalytic hydrogen production”, International Journal of Hydrogen Energy, Vol. 41, no 4, pp. 2498-2511, 2016. Referans3 T. Sun, E. Liu, X. Liang, X. Hu, J. Fan, “Enhanced hydrogen evolution from water splitting using Fe–Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method”, Appl Surf Sci, Vol. 347, pp. 696–705,2015. Referans4 M. Wang, Z. Wang, X. Gong, Z. Guo, “The intensification technologies to water electrolysis for hydrogen production – a review”, Renew Sust Energ Rev, Vol. 29, pp. 573–588, 2014. Referans5 S.H. Hong, S.H. Ahn, J. Choi, J.Y. Kim, H.Y. Kim, H.J. Kim, et al., “High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis”, Appl Surf Sci, Vol. 349, pp. 629–635, 2015. Referans6 Y. Zhu, X. Zhang, J. Song, W. Wang, F.Yue, Q. Ma, “Microstructure and hydrogen evolution catalytic properties of Ni-Sn alloys prepared by electrodeposition method”, Applied Catalysis A: General, Vol. 500, pp. 51-57, 2015. Referans7 Z.Pu, Q. Liu, A. M. Asiri, A. Y. Obaid, X. Sun, “One-step electrodeposition fabrication of graphene film-confined WS2 nanoparticles with enhanced electrochemical catalytic activity for hydrogen evolution”, Electrochimica Acta, Vol. 134, Pages 8-12, 2014. Referans8 D. Brown, M. Mahmood, A. Turner, S. Hall, P. Fogarty, “Low overvoltage electrocatalysts for hydrogen evolving electrodes”, International Journal of Hydrogen Energy, Vol. 7, p. 405, 1982. Referans9 N.V. Krstajić, V.D. Jović, Lj. Gajić-Krstajić, B.M. Jović, A.L. Antozzi, G.N. Martelli, “Electrodeposition of Ni–Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution”, International Journal of Hydrogen Energy, Vol. 33, no 14, pp. 3676-3687, 2008. Referans10 R. Parsons, “The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen”, Trans Faraday Soc, Vol.54, pp. 1053–1063, 1958. Referans11 S. Eugenio, T.M. Silva, M.J. Carmezim, R.G. Duarte, M.F. Montemor, “Electrodeposition and characterization of nickel copper metallic foams for application as electrodes for supercapacitors”, J. Appl. Electrochem., Vol. 44, pp. 455–465, 2014. Referans12 F. Dogan, L.D. Sanjeewa, S.J. Hwu, J.T. Vaughey, “Electrodeposited copper foams as substrates for thin film silicon electrodes”, Solid State Ionics, Vol. 288, pp. 204–206, 2016. Referans13 K. Mazloomi, N. B.Sulaiman, H. Moayedi, “Electrical efficiency of electrolytic hydrogen production”, Int. J. Electrochem Sci., Vol. 7, pp. 3314–3326, 2012. Referans14 H. Shin, J. Dong, M. Liu, “Nanoporous structures prepared by an electrochemical deposition process”, Adv. Mater., Vol. 15, pp. 1610–1614, 2003. Referans15 H. Singh, P.B.Dheeraj, Y. P. Singh, G.Rathore, M.Bhardwaj, “Electrodeposition of porous copper as a substrate for electrocatalytic material”, Journal of Electroanalytical Chemistry, Vol. 785, pp. 1-7, 2017. Referans16 R.Solmaz, G.Kardaş, “Fabrication and characterization of NiCoZn–M (M: Ag, Pd and Pt) electrocatalysts as cathode materials for electrochemical hydrogen production”, International Journal of Hydrogen Energy, Vol. 36, no 19, pp. 12079–12087, 2011. Referans17 A.Döner, R.Solmaz, G.Kardaş, “Enhancement of hydrogen evolution at cobalt–zinc deposited graphite electrode in alkaline solution”, International Journal of Hydrogen Energy, Vol. 36, no 13, pp. 7391–7397, 2011. Referans18 R.Solmaz , G.Kardaş, “Hydrogen evolution and corrosion performance of NiZn coatings”, Energy Conversion and Management, Vol. 48, no 2, pp. 583–591, 2007. Referans19 R.Solmaz, A.Salcı, H.Yüksel, M.Doğrubaş, G.Kardaş, “Preparation and characterization of Pd-modified Raney-type NiZn coatings and their application for alkaline water electrolysis”, International Journal of Hydrogen Energy, Vol. 42, no 4, 26, pp. 2464–2475, 2017. Referans20 R.Solmaz, A.Döner, M.Doğrubaş, İ. Y. Erdoğan, G.Kardaş, “Enhancement of electrochemical activity of Raney-type NiZn coatings by modifying with PtRu binary deposits: Application for alkaline water electrolysis”, International Journal of Hydrogen Energy, Vol. 41, no 3, pp. 1432–1440, 2016. Referans21 R.Solmaz, A.Döner, G.Kardaş, “Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution”, International Journal of Hydrogen Energy, Vol. 35, no 19, pp. 10045–10049, 2010. Referans22 A.Döner, R.Solmaz, G.Kardaş, “Fabrication and characterization of alkaline leached CuZn/Cu electrode as anode material for direct methanol fuel cell”, Energy, Vol. 90, Part 1, pp. 1144–1151, 2015. Referans23 M.Farsak, E.Telli, A. O.Yüce, G.Kardaş, “The noble metal loading binary iron–zinc electrode for hydrogen production”, International Journal of Hydrogen Energy, Vol. 42, no 10, pp. 6455–6461, 2017.